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ABSTRACT

The Handbook of Acoustic Noise Control is intended to provide
an overall view of the problem of the control of acoustic noise, Since
the publication of the first two volumes, the need for their revision
has become apparent. In some cases, material has been added to enlearge
the coverage of original sections, In others, sections have besen complete-
ly re-written to present the latest experimsntal or theoretical infor-
mation aveilable,

With ever-increasing interest and activity in acoustic noise con-
trol, published procedures must, of necessity, lag behind the newest
thinking in the field. There are few areas of the noise control problem
where the present answers are the "best®, As the operational requirements
for noise control devices change and as new or more powerful sound sovrces
appeer in our advancing technology, better answers will have to be found.
In presenting these revised sections, an attempt is being made to keed
up with our expanding knowledgs.

This supplement contains additions and revisions to Volums I which
treated the generation and control of verious types of noise sources,
Similarly, Volume 1I,which analyzed the interastion between noise and
man,is being supplemented. These supplements, together with the un-
ehanged sections of Volumes I and II, provide a unified view of noise
control problems,

PUBLICATION REVIEW
‘nxis report has been reviewed and is approved.
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INTRODUCTION

This section briefly descrlibes the changes that have
been made to Volume I WADC TR 52-204, Handbook of Acoustic
Noise Control. The changes are essentially either of two
basic types. In some cases, new sections have been added
on subjects not covered in Volume I. More often, however,
the new sections reflect changes in theory or practice
which made a reorganization of the material deslirable. In
one case, the new material was of a somewhat different na-
ture and was simply appended to the existing sectlon.

These changes are detalled below to ald the reader in recog-
nizing the relative status of the old and new section. It
will be noted that the revision has proceded on a section-
by-section basis. Thls has necessitated certain changes in
the figure and equation numbering conventions which are also
indicated below.

All of Chapter U4 has been revised although the bulk
of the changes are in Sec. 4.1 which makes up the main part
of the chapter. The discussion of propeller noise has been
reorganized around the existing theory. Both rotational
noise and vortex nolse have been treated and N. A. C. A.
charts constructed from the Gutin theory are given. The
design procedure based on the empirical PWL chart 1s essen-
tially unchanged although 1ts extension to other than three
blade propellers involves a somewhat greater uncertalnty
than indicated in the original section. Chiefly, the .
empirical chart works in the transonic and supersonic tip
speeds where avallable theory is not as well developed.
Also, the two spectrum charts have been replaced by a single
curve which 1s similar to the transonic tip speed case of
the original section.

Section 6.3a adds to the empirical information on
axial flow compressors presented in Sec. 6.3 The new
section discusses the physical principles involved 1in noise
generation by an axial flow compressor. It contalns a
short statement of the theoretical results to date and
1llustrates them with a calculation of the absolute sound
pressure level for a compressor of given operating condi-
tions. The previous empirical deslign procedure 1s still
applicable. Nothing new is presented on centrifugal
compressors.

Section 6.5 on ventilating fans and noise from
ventilating systems 1s new. There is no section in Volume I
to which it corresponds.

WADC TR 52-204 xil



The sectlons on wall construction and floating floors
in Volume I have been greatly expanded and reorganized
around exlsting theory. However, the original sections are
still correct in what they say and they form a good intro-
duction to the more detalled dlscussion of ihe revised
Secs. 11.2 and 11.3. In particular, Sec. 11.3 on the Insula-
tion of Impact Sound corresponds only roughly to the
original Sec. 11.3 dealing with floating floors. The
origlinal section has more architectural detalls which may be
useful to the reader.

The new section on the transmission of sound through
cylindrical shells 1s intended to replace completely the
original section in Volume I. Research in this fileld 1is
continuing, however, and more experimental and theoretical
information may be expected in the future.

Section 12.1 on the specification of sound absorptive
properties of materials 1s new. It replaces the very short
introductory section in Vol. I which simply listed several
topics to be discussed 1n connection with the control of
airborne sound.

The sectlon on the attenuation of sound in lined ducts
(Sec. 12.2) has been greatly expanded. Several different
theoretical procedures for calculating the attenuation, each
of various degrees of accuracy and usefulness are presented,
and all the avallable empirical information is summarized.
A tabular summary of the vardious procedures is given. This
revised section 1s intended to replace the original section
in Volume I completely.

Section 12.6a discusses the use of acoustic resonators

in free space. Since the original section discussed resonators

attached to ducts, the subject matter of the old and new
sections are complementary rather than overlapping.

Finally, Sectlon 12.9 presents a new design procedure
for the prediction of acoustic shielding by an obstacle.
Although it 1s based on the same diffraction theory as the
original section, several modifications found necessary in
actual practice have been introduced.

WADC TR 52-204 xiil




Because the total number of equations, filgures, etc.
in each revised section do not, in general, equal the cor-
responding number in the section replaced, a new ldentifica-
tion scheme has been used. Previously equations, figures,
tables and references were numbered consecutively through
a chapter and were identified by chapter and/or a serial
number. Now all identification numbers refer to both chap-
ter and sectlion in addition to a serial number. For
example, the fifth equation in Ch. 12, occurring say in
Sec. 2 1s now numbered Eq. (12.2.5) while previously it
would be numbered simply Eq. (12.5). References, instead
of being a single number, such as Ref. (7) now contain a
section 1dentification also; the fourth reference is Sec.l1l1l.5
and 1s now numbered (5.4). Finally, a letter a following
a section designation indicates that the section does not
replace the previous section, but merely supplements it, e.g.,
Sec. 12.6a. Flgure, equation, table and reference numbers
then contain the letter also, e.g., Fig. 12.6a.5.

A 1ist of errata to Volume I 1s given at the end of
this volume.

WADC TR 52-204 xiv




CHAPTER 4
AIRCRAFT PROPELLERS AND RECIPROCATING ENGINES

4.1 Propeller Noilse

Introduction. The propeller, rather than the engine,
is the chief source of noise 1n the usual reciprocating-
engine aircraft of 200 horsepower or more. For this reason,
conslderable work has been done toward explaining the action
of thilis important nolse source. The problem has not as yet
been treated rigorously from a theoretical standpoint, but
the approximate analysls which has been done has proved
satisfactory for engineerling purposes in the case of pro-
pellers operating at subsonic blade speeds and not too close
to obstacles. Also, the approximate analysisshows clearly
the role played by the various parameters which are important
in propeller noise generation, including particularly horse-
power, thrust, tip speed, dlameter, and number of blades.
The results of this analysls are glven here. Measurements
are clted and comparisons between theory and experiment are
shown where possible. Equatlions and charts for engineering
calculations are given. Their use 1s explained in a numerical
example at the end of the section.

Gutin's Theory of Rotational Propeller Nolse. A rotat-
ing propeller blade at constant speed carries with 1t a
steady pressure distrlbution. Hence, any non-axial point,
fixed 1n space with reference to the alrcraft, experlences
a periodic pressure variatlon, generally of complex wave
form, always having the blade passage frequency as the funda-
mental. Thils perlodic pressure variation 1s an acoustic
disturbance, and 1s known as the rotational noise. For
points lying in, or very nearly in, the volume swept out by
the propeller blades, and for cases where there is negligible
overlap of the pressure distributions of adjacent blades,
the pressure dilsturbance due to a multiple-blade propeller
can be approximated simply as a repetition, at the appro-
priate frequency, of the disturbance due to the passage of
an isolated blade. (In other words, for such near points,
the pressure disturbance at a glven time 1s due to the
nearest blade, the iInfluence of the more distant blades be-
ing negligible.) To this approximation, the acoustic
disturbance very near the propeller can be simply expressed,
and the disturbance at more distant points can then be
calculated by integrating the signal propagated from all
regions near the propeller. To facllitate this calculation,
the disturbance 1s considered to radiate from a zero-thick-
ness disk in the region swept out by the propeller. This

WADC TR 52-204 1




1s the basis for Gutin's analysis of the rotational pro-
peller nolse 1.1/. The Gutin analysls does not consider
nonperiodic disturbances (principally vortex noise), which
are produced by an actual propeller along wlth the periodic
rotational noise. These will be considered later. The
analysis assumes that the forward speed of the propeller is
small compared to the speed of sound.

Gutin's analysis proceeds by writing expressions for
the reaction on the alr of the time-dependent thrust and
drag forces due to a single rotating propeller blade. These
forces are then expressed as a Fourler series; the funda-
mental frequency 1s the blade passage frequency n (0L where n
i1s the number of blades in the propeller and L 1s the
rotational frequency in radians/sec. The force exerted on
the air by a rotating blade also depends on the thrust dis-
tribution dalong the blade. In the Fourler expansion, the
sine function 1s approximated by 1ts argument mn C t where m
is the harmonic number and t 1s the time. This 1s Justifiled
provided that the discussion 1s restricted to a sultably
small value of the product of number of blades and of har-
monlc number, and provided that the portions of the blade
near the hub (which produce a relatively small part of the
alr forces) are ignored. Gutin also shows that his
expressions, which are in no case valld for high harmonics,

are correct when the air forces are not uniformly distributed
over the width of the blade.

Expressions for the aerodynamlc disturbance in the
propeller disk having now been established, the next step
1s to compute the resultant acoustic effect at external
points. The coordinates shown in Fig. 4.1.1 are used.
From hydrodynamics, we can immediately write the velocity
potential ﬁy?or the resultant sound field from the known
forces acting on the air due to the rotating propeller
blade 1.2/. The sound pressure i1s the time derivitive of
the velocity potential. That 1s, for an air density p,
the sound pressure p is pd@/dt. While this gilves the
desired acoustic solution in principle, some simplifica-
tions are desirable for ease in calculation. Gutln

WADC TR 52-204 2




PROPELLER DISC

FIGURE 4.1.1

Coordinate systems used in calculation of noise
radliated by a propeller.

restricts the polnt of observation to the xy plane, wlth-
out loss of generallty, and also restricts r to values
much greater than the propeller diameter. The latter
stipulation wlll make the succeeding work inapplicable to
the near fleld, so that the results under this restriction
wilill not apply to nolse levels within the ailrcraft 1itself.

WADC TR 52-204 3




It 1s desirable to put the result in a form which
does not demand detalled knowledge of the distribution
of thrust and torque along the blade. Thils 1s achleved
approximately by considering the total thrust P and the
total torque M to act at effective mean radil R; and Rp
respectively. The sound pressure becomes

mw

p = [PcosY/‘J (kR kR, sin %) +-r-1-9![—-§ mn(kR2 sin V)]

®1 2

2vcr

(4.1.1)

The radian fundamental frequency 1s w;, ¢ 18 the velocity
of sound, Jyn 1s the Bessel function of order mn and k =w/c
where w 1s the frequency of the m th harmonic of wj. Gutin
further shows that, for the lower harmonics produced by
propellers having a "small" number of blades, both Ry and
Ro are approximately equal to R;, the radius corresponding
to the point of resultant thrust for a single blade, which
1s of the order of 0.7 or 0.8 of the propeller radiusR,
This leads to the final simplified result,

_ 1 ncM
= === [ - P cos &+ -

wch

I (ch sin 2+) ]

(4.1.2)
This expression 1s a sum of two terms, the first of which

18 the thrust term, and the second of which 1s the torque

term. The torque 1s proportional to the input power, W,
through the relation

W=MQ@ (4.1.3)

WADC TR 52-204 4




90°
120°

FROM GUTIN

THEGRY EQ.(412)
Re=0.7 \
[
|
!

N, KEMP'S MEASUREMENT

\'/_( FUNDAMENTAL)

150%

FROM GUTIN 300
THEORY EQ.(4.1.2)
R¢ = 0.7 Ro
[« ]
180 DIRECTION OF
FLIGHT

Figure L4.2.1

Calculated and measured distributions of
fundamental -frequency sound pressure from a
propeller, The measurements are by Kemp 1.4/,
The calculations are from the Gutin equation

(4.1.2), for values of R, equal to 0.7 R, and
to 0.75 R,
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90° FROM GUTIN
/' THEORY EQ.(4.1.2)

120°

KEMP'S MEASUREMENTS
SECOND HARMONIC

300
180° e —»00
DIRECTION OF
FLIGHT
FIGURE 4.1.3

Calculated and messured distributions of second-
harmonic sound pressure from & propeller. The
measurements are by Kemp 1.4/. The calculations

are from the Gutin equation, (4.1.2), with R, = 0.75 R,

WADC TR 52-204 6




The thrust P 1s related to the input power by an
aerodynamic relation which Gutin gives in the form

p = (2pSW2 n?)1/3 (4.1.4)

where S 1s the area of the propeller disk and N is an
efficiency factor estimated to equal about 0.75.

Gutin calculated the expected polar distributlon of
radiated sound for the first two harmonics, for the follow-
ing situation: Two-blade propeller, radius 2.25 meters,
1690 kg thrust, 515 kegm torque, 13.9 rev/sec. The results
-were compared wilth experimental data for this situation
as taken by Parils 1.3/ and by Kemp 1.4/, with values of
both 0.7 and 0.75 belng tried for R o+ . The comparison
with the Kemp results is shown in Figs. 4,1.2 and 4.1.3.
The agreement is fair for the fundamental, but appears to
‘deteriorate for higher harmonics. This would be expected
from the nature of the assumptions made 1n the derivatlon.
Fortunately, the fundamental usually constitutes the
greatest single contribution to the sound output. Gutin's
calculations showed slightly better agreement with the
Paris data (fundamental only).

The general features of the polar patterns in Figs.
4,1.2 and 4.1.3 are found in virtually all cases of nolse
generation by a propeller free of obstacles. The torque
term results 1n an acoustlc pressure pattern which is zero
on ‘the propeller axls and maximum in the propeller plane.
The thrust term results in an acoustic pressure which is
somewhat smaller than the maximum torque contribution (this
need not always be true), and which is zero in the plane
of the propeller as well as on the axis. The two contri-
butions are out of phase for positions in front of the
propeller, but in phase for positions to the rear. The
comblned effect of the two terms ls a radiation pattern
having symmetry of rotation, which 1s zero on the propeller
axls and which is maximum at a position some 15° behind
the propeller plane.

N.A,C.A, Propeller Noise Charts Based on Gutin's Equa-
tion. No propeller nolse analysis 1s available which does
not include at least some of the approximations made by
Gutin. Fortunately, the simplified Gutin relation,

WADC TR 52-204 7




Eq. (4.1.2), seems to give the maximum overall sound
pressure in the far fleld of a propeller to an accuracy
sufficient for the usual requirements of nolse-control
engineering, at least for those propellers operating at
subsonic tip speeds which are currently in use.

A convenient set of propeller-nolse charts has been
computed from the Gutin relation by Hubbard 1. under the
ausplces of the N.,A.C.A. These are reproduced 1n part
in Figs. 4.1.4 through 4.1.9. The independént variables
are lnput horsepower, propeller diameter, number of blades,
and rate of rotation or Mach number of the blade tip. The
result 1s read from the charts as sound pressure level at
a distance of 300 feet, at a position 105° removed from
the forward propeller axis (approximately the position of
maximum sound pressure in ordilnary casesg. The sound
pressure contributions from the first four harmonics have
been added on an energy basis to give this result; hence,
the values obtalned are closely representative of overall
sound pressure level, since ordlnarily the contributions
of the higher harmonics drop off rapidly.

Analysis of a typical propeller radiation pattern
shows that the sound pressure level in the direction of
maximum output 1s about five db above the space-average
value. Hence, 5 db should be subtracted from the chart
values to obtaln the space-average sound pressure level
at a distance of 300 ft. Adding 55 db to the N.A.C.A.
chart values glves approximately the power level of the
propeller as a nolse source.

The Gutin result 1s found in the N.A.C.A. publica-
tions by Hubbard 1.5/ and others in the form and symbols

of Eq. (4.1.5). 1s 1s adapted to simple engineering
computation.

169.3uBDM, | Py
p:
2sA c(o.smtf2

- T cos B JﬁB(o.BmBM£ sin g).

(4.1.5)
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diameters (solid-line curves).

power level of the propeller add 55 db to the result.
are estimated levels due to vortex noise.
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Same as Fig. 4.1.4, but for 4000 horsepower input.
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Here m is the harmonic number; B, number of blades;

D, propeller dlameter, ft; Mg, tip Mach number; s, dis-
tance from propeller hub to observer, ft; A, propeller
disk area, sq ft; PH, input horsepower; T, thrust in
pounds; B , angle between forward propeller axis and line
of observations. The effective radius has been taken as
0.8 of the total.

In Hubbard's calculations, the thrust 1s derived
from the 1nput horsepower by a relation equivalent to the
one used by Gutin, Eq. (4.1.4), except that a revised
value of the constant gives thrust values which are 0.78
of those computed by Gutin's procedure. The procedure
used by Hubbard is sald to be approximately correct for
propellers operating near the stall condition.

The sound pressure levels given in the N. A, C. A.
charts 1nclude an estimated contribution from the non-
perlodic vortex nolse, which ordinarily constitutes a
small portion of the total propeller nolse power. The
basis for calculation of the vortex nolse will be discussed
later. The broken lines 1n the charts indlcate the es-
timated levels of vortex noise only.

Effect of Number and Shape of Blades on the Rotational
Noilse. Two of the most important parameters which can be

altered in the propeller with a certain amount of flexi-

bllity are the number and shape of the blades. It 1s
readlly visuallzed that the number of the blades determilnes
the frequency of the fundamental blade passage tone. On
the other hand, 1t can be shown that the intensity of the
sound will decrease as the number of bilades 1s 1ncreased.

A qualitative explanation for the reduction of sound
output by an Increase of the number of blades can be glven
on the basls of the phase cancellation of the several com-
ponent forces. A simple example 1s given by the generatlion
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FIGURE 4.1.10

Illustration of the acoustic pressure components
developed by a one-blade propeller, and of the cancella-
tion of the odd harmonics of the original sigonal wvhen

a second blade is added.
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of sound by a propeller consisting of one blade only. The
corresponding aerodynamic force is shown in Fig. 4.1.10,

In that flgure the Fourler components have also been repre-
sented (not to scale). In Figure 4.1.10 the case of a two-
blade propeller 1s considered. The Fourier components of

the force shown in thils flgure indicate that the odd harmonics
(with reference to the original one-blade propeller) cancel,
while the even harmonics are reinforced., A quantitative
calculation shows that the net effect, however, 1s an overall
decrease 1n the sound intensity. For the speclal case in
which the tip speed, the thrust, and the input horsepower

are kept constant, while the blades are redesigned and 1in-
creased 1n number, the acoustic effect can be seen directly
from Eq. (4;1.53. The quantity which varies is mB [Jup
(0.8mBMg sin g )]. Examination of tables of Bessel functions
shows that, for typlcal values of the varizbles, this quan-
tity decreases rapidly as mB increases.

The effect of the blade wldth can be particularly
important for the higher harmonics. In the Gutin approxi-
mation, the force produced in the propeller plane by the
passage of an individual blade 1s treated as an impulse.

This 1s equivalent to assigning the propeller blade a
negligible width. Regler 1.6/ has evaluated the spectrum
distribution corresponding to several more nearly realistic
force-time characteristics, as shown in Fig. 4.1.11. All of
these distributlons have equal areas under “he curves, and
thus exert equal forces on the propeller. The horizontal
line for the zero-width blade corresponds to the uniform
Fourler amplitudes in the Gutin approximation; the other
curves show the new distributions which replace this one in
the case of finite blade width. It i1s apparent that increas-
ing the wilidth of the blade, while the thrust 1is kept constant,
decreases the intensity of the radiated sound through reduc-
tions in the amplitudes of the higher harmonics.

The role played by the number and kind of blades
in the total noilse radiated by a propeller is illustrated
in a series of experiments by Beranek, Elwell, Roberts,
and Taylor 1.7/. The experiments consisted in measuring
the nolse radiated in flight, by certaln aircraft of less
than 200 horsepower, for propellers of two, three, four,
and six blades. The propellers exerted approximately
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Effect of the shape of the force distribution

around a propeller blade on the harmonic content
of propeller rotational noise (for points near the

propeller plane).

same area. The number refers to the duration of
the pulse as a percentags of the time for a full

revolution.
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equal thrusts and were of nearly the same diameter. The
results may be summarized approximately by the statement
that the intensity if lowered 6 db for each doubling of
the number of blades 1in the propeller, the input power
and the speed of rotation remaining fixed.

Hicks and Hubbard 1.8/ measured the noise from
small propellers of two, four, and seven blades under
controlled conditions, and compared the measured sound
levels with calculations from the Gutin equation. A
selection of typical results is given in Table 4.1.1.

The sound pressure levels refer to a point 30 ft from the
propeller hub, in open alr, in a direction 105° from the
forward propeller axls. The blade angle 1s 16.59°,

TABIE 4.1.1

MEASURED SOUND PRESSURE LEVELS FROM 4-FOOT DIAMETER PROPELLERS AND
CALCUIATED LEVELS FROM THE GUTIN EQUATION - REFERENCE 1.8

Overall SPL of
SPL by SPL by Rotational
Input Wave Wide-Band Noise, from
Number of Tip Mach Horse~ Analyzer Measure- Gutin
Blades Number power Method ment Equation
db db db
2 0.3 3.5 79.6 85.8 83.8
5 20.5 95.9 95.9 98.0
T 65.8 111.k 110.4 111.1
9 148.2 123.4 121.6 123.0
I 0.3 6.0 75.8 81.9 65.8
.5 3k.2 94.3 96.9 90.9 .
T 110.0 110.6 111.5 110.5
.8 167.8 116.8 116.h _—
7 0.3 10.7 68.8 78.3 38.4
.5 53.0 85.0 89.9 80.9
.64 124.0 99.2 100.0 98.6
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The results by the wave analyzer method refer to the
square root of the sum of the squares of the amplltudes
for the first five harmonics of the blade passage fre-
quency. This method therefore measures the level of
the periodic rotational noise, provided that the effect
of other nolse components falling within the pass band
of the wave analyzer (25 cps) i1a negligible. The
calculated values represent the square root of the sum
of the squares of the individual calculated amplitudes
for the first five harmonilcs.

For each propeller, the SPL measured by the wave
analyzer method and that measured by the wlde-band
method in the range of Mach numbers above about 0.6,
are both closely equal to the value predicted by the
Gutin theory. This means that the nolse at the higher
Mach numbers 1s almost entirely of the rotational type,
and that 1ts overall level under these conditions is
adequately predicted by Gutin's equation. Thus, as far
as operation at the higher Mach numbers is concerned,
theory and experiment agreeas to the amount of reduction
in noise level which 1s obtalned by increasling the num-
ber of propeller blades and reducing the tip speed. For
example, in Ref. 1.8 it is found that for a tip Mach
number of 0.7, 66 horsepower can be absorbed by the 2-
blade propeller with a 16.50 attack angle, and 76 horse-
power by the 7-blade propeller with a 10° attack angle.
Although the horsepower 1s nearly the same, the second
confilguration gives a wlde-band sound pressure level of
101 db, as compared to 110 db for the first. The calcu-
lated values are 100 db and 111 db.

In the results for each propeller confilguration in
Table 4.1.1, the overall SPL at the lower Mach numbers
1s greater than the SPL by the wave analyzer method,
which 18 1n turn greater than the calculated value from
the Gutin equation. These effects are explained at
least partilially by the additional observation that the
sound at the lower Mach numbers consists mostly of
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nonperiodic vortex nolse rather than periodic rota-
tional noise. 1In the theory of vortex noise, which 1s
discussed at the end of this section, it is shown that
this should occur, because vortex noise decreases less
rapidly than rotational nolse as the tip speed is reduced.
The data in Ref. 1.8 do not show conclusively whether or
not the Gutin theory remains approximately correct for
rotatlional noise alone at the lower Mach numbers, since
it is not certain at what point the wave analyzer results
begin to represent vortex nolse. These experlments seem
to show, however, that the Gutin equation predicts
overall propeller nolse to adequate engineering accuracy
under those operating conditions where rotational noise

i1s dominant.

Deming's Extension of the Gutin Theory. Demirig 1.9/
attempted to lmprove upon the Gutin approximations by
including the finite thickness of the propeller blades
in the analysis, and by introducing the concept of distri-
buted aerodynamic forces, instead of assuming the force
concentrated at one value of the radius. It was hoped
that considering the finite thickness of the blades would
improve the accuracy of the calculations for the higher
harmonics, for which the assumption that the propeller
thickness 18 much less than the wavelength of the radiated
sound 1s not Justified. Deming also performed a careful
series of experiments. It was found that the particular
improvements which he had made in the Gutin theory did
not yleld results appreciably different from Gutin's,
but that the experimental work showed a greater disagree-
ment with the theory than Gutin had originally suggested.
Figure 4.1.13 shows a comparison between Gutin's and Deming's
calculations, together with Deming's measurements.

The Effect of Forward Speed upon Propeller Rotational
Noise. The Gutin equation must be modified, when 1t is
desired to find the noise radiated by a propeller moving
forward in the air, to take into account the fact that
the forward speed- alters the effective acoustic path length
from an element in the propeller disk to the point of
observation. Q(arrick and Watkins 1.10/ have worked out
the necessary changes in the theory. Their result for the
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far field is given in Eq. (4.1.6). The point of observa-
tion remains in a fixed posltion relative to the moving

propeller.
mw mw, YR
p= 1 T M + .S %5 -q Be J 5 1 c2 =
21rch§+ﬂ2y2 ;/x§+ 1,92yE @ Ry xV/x%+ By
(4.1.6)

In this equa.ion, m 1s the harmonic number; wj;, funda-
mental frequency in radians/sec; ¢, speed of sound; B
denotes Vi - M2; M, Mach number for forward speed; T,
thrust; Q, torque; B, number of blades; R., effective blade
‘radius; x,y, coordinates as in Fig. 4.1.1. Setting B equal
to unity gives a result equivalent to Eq. (4.1.2) or

Eq. (4.1.5) for a statically operated propeller.

It 1s found from Eq. (4.1.6) that the effect of in-
creasing the forward speed, for a propeller operating at
constant thrust, is to increase the nolse output and to
alter the directional distribution in a somewhat complil-
cated fashion. Garrick and Watkins also give equations for
computing the near fleld of the propeller with forward
speed.

The effect of increasing the forward speed under condi-
tions of constant thrust corresponds to a hypothetical case
which 1s of less practical interest than the effect of
increasing the forward speed and allowing the thrust to
decrease 1n the manner of an actual propeller. Apparently
this decrease of thrust wlll usually cause the noise of
an actual propeller to decrease wlth increasing forward

FIGURE 4.1.12

Comparison of observed sound pressure distribution
around a propeller with Gutin's and Deming's theories.
Measgured distribution, ; Gutin's prediction ----- H
Deming's modified result, __ _ __ _. Part A, funda-
mental frequency; Part B, second harmonic; Part C,
third harmonic; Part D, fourth harmonic .
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FIGURE 4.1.13

Polar diagrams of the distribution of rms sound pressure for a 2-blade,
10-foot diameter propeller, for various values of forward-speed Mach

number, M.
parallel to it.
distance of 20 ft.

Solid lines, values along a line 20 ft from the axis and
Broken lines, true polar patterns at constant radial
The blade angle is always adJusted so that the input

is 815 horsepower at a torque of 2680 1b-ft. The thrust values are

shown in the figure. From Ref. 1.10.
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speed up to Mach numbers of about 0.4, Garrick and Watkins
have calculated the noise output of a two-blade propeller
for various forward speeds, with the thrust values taken
from actual aerodynamic measurements. The results are
shown in Fig. 4.1.13. The initial drop of noise output as
the forward speed increases 1s confirmed in a measurement
by Regler 1.11/, who found that the overall nolse. developed
by a light trainer airplane in normal flight 1s 6 db less
than that produced by the same alrplane in static ground
operation.

As a practical matter, the distinction between the
Gutin relation and the modified equation for the case of
forward flight, Eq. (4.1.6), may be neglected for forward
speeds up to M = 0.3. At thils speed, the value of;S has
dropped only to 0.95, from the value 1.00 corresponding to
static operation. Therefore, within this range, the effect
of forward speed may be represented adequately by making
the appropriate changes in the thrust value used in the
original Gutin approximation.

Noise Levels Very Near a Propeller. Calculatlion of
the nolse levels near a propeller by Gutin's method requires
that some of the convenlent geometrlic approximatlions be
omitted and that more complicated integrations be carried
out. ‘These calculations have been done by Hubbard and
Regler 1.11/ for several cases. The work of Garrlick and
Watkins on the movling propeller, described above, also per-
tains largely to the near field.

Hubbard aund Regler found that near-fleld calculated
gound pressures, for the first few harmonics, were 1n good
agreement with experiments performed with model propellers
of diameters 48 to 85 inches, the range of propeller-tip
Mach numbers being 0.45 to 1.00. The observed pressure
increases very rapldly as the measuring polnt is brought
close to the propeller tips; this behavior corresponds
closely to what would be observed if the propeller tip
were the effective nolse source in the very near field.
The distribution of sound pressure in the propeller plane
can be expressed conveniently in terms of d/D, where d 1s
distance from the propeller tips, and D is the propeller
dlameter, for a given propeller shape and given rotational
speed. On this basls, good agreement was obtalned between
observations taken near the full-sized propellers, and
extrapolated results of the model studies.
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The sound pressure ahead of the propeller plane 1is
out of phase with that behind the propeller plane in most
cases where the near field was investigated. A plane wall
(simulating a fuselage) placed Jjust behind the microphone,
parallel to the propeller axils, and 0.083 of a propeller
diameter from the tips, doubles the pressure reading for
a given locatlion by reflection, but does not seem to react
on the acoustic behavior of the propeller. (This conclu-
sion might not hold 1f the wall were brought much closer
to the propeller tips.)

Input power and tip speed are of primary importance
in determining the near field. At the lower tip-speed
Mach numbers, the sound pressure for given tip speed and
input power 1s reduced by using a propeller with a greater
number of blades, but this difference virtually disappears
at Mach 1.0. At constant power, the pressure amplitudes
of the lower harmonics tend to decrease, and of the higher
harmonics to increase, as the tip speed 1s increased. The
difference in sound pressure produced by square and rounded
tips is found to be very slight, with the square tips pro-
ducing about 1.0 db higher SPL than the round, in a very
restricted reglon near the propeller plane. Also, blade
width is found to have no important effect.

Further, Hubbard and Regler compared thelr more
accurate near-fleld calculations with the results obtailned
by using the Gutin equation for the near field, 1n the
plane of the propeller. It 1s found that the Gutin equa-
tion under-estimates the SPL in this situation. Apparently
the discrepancy becomes less than 2 db when the distance
from the propeller tips 1s greater than one propeller dia-
meter, so that the Gutin equation 1s sufficiently accurate
for many purposes at dlstances greater than this.

Where 1t 1s desired to know the overall sound pres-
sure level of propeller noise immediately within an air-
plane cabin, at a locatlion near the propeller tips, the
experimental findings of Rudmose and Beranek 1.13/ may be
used. They analyzed data taken within some 5 ypes of
ailrcraft of the period 1941-1945; in seven types, a
systematic study of the parameters which influence the low-
frequency propeller noise was made.
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The following generalizations were made:

(a) The SPL increases by about 2.7 db for each
increase of 100 ft/sec in propeller tip speed.

(b} The SPL increases by approximately 5.5 db for
each doubling of the horsepower per engine.

(¢) The SPL increases rapidly as the clearance
between the propeller tips and the fuselage
is decreased below 8 inches, but becomes rela-
tively independent of this clearance when the
value 1s above 20 inches.

(d) Propellers with blunt tips produce more nolse
by several db than propellers with fine pointed
tips. The results are summarized in Eq. (4.1.7).

SPL = 102+§-3 - 3—12‘-+18.3 log g5+0.027(V, - 700) -
d |

C(4.1.7)

Here d 1s the minimum propeller-fuselage distance in
inches, HP 1s the horsepower delivered to each propeller,
and Vo, 1s the propeller-tip speed in ft/sec. This equa-
tion 1s intended to give the SPL in each octave band
below 150 cps, exlsting within a typical cabin, at about
2 ft from the wall, in a section of the airplane within
6 £t of the plane of the near propellers, there being no
bulkhead between the observation point and the propeller
plane. The relation represents data for two- and four-
engine aircraft, and refers primarily to 3-blade pro-
pellers. Subsonic tip speeds are assumed. The authors
found that approximate noise levels for 4-blade and
2-blade propellers could be obtained from the same equa-
tion by multiplying the actual horsepower per engine by
3/4 and 3/2, respectively, before inserting the horsepower
value 1in the equation. The amount by which the overall
propeller SPL in the cabin exceeds the above octave-band
value seems to be at least 3 db in all cases, and more
usually of the order of 5 db. This figure will increase
with increasing tip speed because of the rising pre-
gonierance of high harmonics, mentioned by Hubbard and
egler.
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The Rudmose-Beranek experimental results can be
reconclled falirly effectlvely with the theoretical analy-
8ls. The increase of SPL by 5.5 db for each doubling of -
Input power agrees closely with the predictions of the
propeller charts, Figs. 4.1.4 - 4.1.9, which show that
this effect 1s generally 5 to 6 db per power doubling. -
The increase of SPL at the rate of 2.7 db per 100 ft/sec.
increase of tilp speed, as reported by Rudmose and Beranek
for the low frequencies, 1s somewhat less than that pre-
dicted in Figs. 4.1.4 - 4.1.9, where the effect is about
20 to 30 percent greater than this, for three-blade
propellers., This discrepancy 1s qualltatively reasonable,
however, because the charts include the combined effect of
four harmonics, and it 1s known that the effect of tip
speed goes up with increasing harmonic number. The
critical effect of clearance between the propeller tip and
the fuselage 138 predicted in the analysis and measurements
by Hubbard and Regier 1.12/. The final observation of
Rudmose and Beranek, that propellers with flne pointed tips
produce a lower cabin sound level, 1is superficlally 1in
contradiction to the findings of Hubbard and Regler, but
can probably be 1nterpreted to mean that an extreme change
of blade shape, in this sense, causes the effective sound
source for fine tip blades to be located further in from
the tip of the propeller. The absolute levels given by
Eq. (4.1.7) are considerably lower than those given by
free-space propeller theory, since Eq. (4.1.7) includes
the noise reduction afforded by a typical cabin.

Dual-Rotating Propellers. Hubbard 1.14/ has applied
Gutin's analysls to dual-rotating propellers, and has
found reasonably good agreement with the results of experl-
ments on a model unit comprised of two, two-blade, 4-ft
diameter propellers. The sound fleld no longer has
clrcular symmetry about the propeller axis, but instead has
maxima in the directions of blade overlap. These maxima
of sound pressure correspond closely to the amplitude
which would be produced by a single propeller having the
same number of blades as the total in the tandem unit.
The intervening pressure minima have amplitudes correspond-
ing closely to the output of one of the dual propellers
only. If the two propellers rotate at slightly different
speeds, the pattern of maxima and minima then rotates,
and the sound reaching the observer 1s consequently
amplitude modulated. When the number of blades 1s not
the same in the front and rear units, this modulation is
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found only for harmonics which are integral multiples

of both fundamental frequencies; for example, the lowest
modulated harmonic of a three-blade, two-blade dual-rotat-
ing propeller is the sixth. The case of tandem propellers
operating side by side was also investigated, and similar
phenomena were found. The results thus far mentioned are
not critically affected by the separation of the propellers.

An additional signal, the "mutual interference noise",
is developed when the spacing of the dual-rotating elements
is made small. This noise component appears to be a maxi-
mum on the forward axis of rotation, where the rotational
noise is small, and has a fundamental frequency equal to
the blade passage frequency. The mutual interference
noise is undetectable at positions near the propeller plane,
where the rotational noise 1s strong, and apparently
consitutes only a small fraction of the total power
radlated by the propeller. The pressure amplitude of this
additional noise component varies as the propeller power
and as the cube of the tip speed, according to measure-
ments on the axis. The effect of spacing is critical; in
Hubbard's experiment, the mutual interference noise 1is
the predominant signal on the forward axls at a spacing of
63 :, but is not detectable with certainty at a spacing
of 12".

The Effect of Struts on Propeller Nolse. While no
theoretical analysis has beén made of the effect of a
strut near the propeller plane, the experimental evidence
indicates that a much more serious disturbance 1s produced
by a strut ahead of the propeller than by one behind.

This question was examined in the work on dual-rotating
propellers described above. No strut effect was reported
for the tractor propeller, which was supported by a strut
placed behind. The pusher propeller (supported by a strut
ahead) was found to give 3 db higher overall SPL than the
tractor when the pusher strut clearance was 11.75 inches,
and about 7 db higher SPL than the tractor when this
clearance was 5.75 inches. The effect 18 nearly independent
of tip speed.

An Increase of noise resulting from a strut ahead of
the propeller was also reported by Roberts and Beranek
1.15/ in a series of experiments on quieting of a pusher
amphibian. The total nolse power radiated by this air-
plane was greater than that from a tractor airplane operat-
ing at greater power and tip speed. The sound level
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measured from the pusher did not drop off sharply to the
rear as 1t does for a tractor alrplane, and as the Gutin
theory predicts. Whereas the nolse output of a tractor
airplane for specifled power and tip speed can be de-
creased by increasing the number of propeller blades,

in at least qualitative agreement with the Gutin theory,
the pusher alrplane was found to become noisier as the
number of blades was increased above four.

Supersonic Tip Speeds and Empirical Propeller Noilse
Chart. The Gutin theory of rotational noise and its
various modifications are all restricted to subsonic tip
speeds., At present, the knowledge of propeller noise
generation for supersonic tip speeds is restricted to
experimental findings. In general, the experimental data
show that there 1s no discontinuous change in nolse out-
put as the propeller goes into the supersonic range. At
or near the beginning of the supersonic range, however,
the noise power output becomes nearly independent of tip
speed, as shown in N. A. C. A. experiments 1.16/ on a
model propeller, the sound output of which was in good
agreement with the Gutin theory in the subsonic range.

A less extensive serles of measurements by a commercilal
laboratory (unpublished), on full-scale propellers, seems
to 1ndicate that the noise output for supersonic tip
speeds also becomes relatively independent of input power.
This statement 1s based upon observations of 10- and 16-ft
diameter propellers in the range 800 to 2000 horsepower.

In the absence of a sultable theory of nolse genera-
tion in the range of supersonic tip speeds, the empirical
chart in Fig. 4.1.14 has been prepared as an approximate

FIGURE 4.1.14

Propeller noise chart, constructed from experimental data,
shoving the approximate acoustic power level for tip speeds
into the supersonic range. The chart applies to 3-blade
propellers, of diameter approximately 12 ft. Power levels
for 2- and h-blade propellers lie approximately 2 db above
and below the chart values, respectively. For operating
conditions to the upper right of the broken line, propeller
noise usually exceeds the exhaust noise from a reciprocating
engine, but for operating conditions to the lower left,
exhaust noise may predominate (see Sec. 4.3).
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summary of existing information. This chart gives the
overall power level of the propeller when the input horse-
power and the tlp speed are known. The information for

tip speeds of 1000 ft/sec and greater was taken from the
twosources mentioned above. The subsonic portion of the
chart is arbitrarlly drawn to have the dependence on tip
speed and input power which was reported by Rudmose and
Beranek for low frequencies, as shown in Eq. (4.1.7); on
the basis of propeller nolse theory, slightly greater
effect of tip speed might be argued. The absolute

values indicated by the subsonic curves are determined

in part by the low-speed portions of the data on large
propellers mentioned above, and in part by several mea-
surements of ground and flight operation of actual alrcraft
under known conditions. Where measurements were taken with
a microphone very near the ground and within 50 ft of the
source, pressure doubling at the microphones was assumed,
and 6 db was subtracted from the SPL reading. Where the
microphone was 200 ft or more from the source, so that
ground attenuation might be more important, thils reflection
correction was arbltrarlily reduced to 3 db. To get the
power level for an outdoor propeller from the SPL measured
in one direction, use was made of the typical propeller
directivity curve shown 1n Fig. 4.1.15. The individual data
points used to make the chart are generally conslstent

with the final chart values within 4 db. The extension

of the curves into the supersonlc range 1s determined by
very few measurements and 1s therefore tentative.

The chart in Fig. 4.1.14 does not show the effect
of propeller dlameter or of number of blades. The chart
1s an approximate average of data for propellers of two,
three, and four blades, and 1s most nearly correct for
three blades. Very roughly, values for propellers of two
and four blades lle 2 db above and below the chart values,
regpectively. The chart 1s most nearly correct for pro-
pellers of diameter 12 ft; for 3-blade, 12-ft propellers,
the subsonic portions of this chart are generally in agree-
ment with the charts based on Gutin's equation, Figs. 4.1.4
through 4.1.9, within 3 db. For propellers of about this
size, the empirical chart in Fig. 4.1.14 may be used in
lieu of the detalled charts for engineering predictions.
Either thils chart or the detalled charts, properly applied,
should predict overall static propeller noise within + 5 db
in most instances.
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Parkins and Purvis 1,17/ have measured maximum
sound levels beneath a number of types of 2- and 4-
engine aircraft immedlately after takeoff, and have
reduced thelr results to a standard distance. If it is
assumed that the alrcraft as a whole has approximately the
same directivity as a propeller*, so that the maximum SPL
1s approximately 5 db above the space-average value, and
if 1t 1s assumed that the nolse powers from the propellers
on a given airplane are additive, these data can be reduced
to glve the power level of a single propeller under take-
off conditions. It 1s foundthat the power levels obtained
in this way are typically 8 db lower than those predicted
by the chart in Fig. 4.1.14, Therefore, 8 db should be
subtracted from the chart values to obtain power levels
for flight condltions following takeoff. This correction
is in the expected directlion, inasmuch as the chart refers
to static operation, for which nolse generation 1s greatest.

The Spectrum of Propeller Nolse. The theorles of
propeller nolse do not give a generally successful treat-
ment of the frequency distributlion of the sound energy.

The success of the theories 1in predicting overall sound
power 1s attributable partly to the fact that a large part
of the energy radiated 1s found in the first few harmonics
of rotational noise. The theoretical calculations of rota-
tlonal nolse generally underestimate the amplitudes of the
higher harmonics. Moreover, a large part of the high-
frequency energy often comes from vortex noise, the ampli-
tude of which 1s not rigorously predictable at present.
Theoretlcal considerations of both rotational and vortex
nolse agree qualitatively, however, that the high-frequency
energy increases relative to the low-frequency energy as
the propeller tip speed 1s increased (at least, in the
subsonic range). 4

* Some unpublished measurements of the polar sound distribu-
tion for an airplane operating on the ground show that this
assumption is reasonable. The observed distribution is
similar to that in Fig. 4.1.13, which is for a propeller on
a test stand, except that the sound levels behind the actual
airplane do not fall off as rapidly for points toward the
front of the plane.
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The octave-band spectra measured immediately beneath
several types of transport airplanes shortly after takeoff,
presumably under full-power operation, are shown in
Fig. 4.1.16. The information is from Ref. 1.17. There 1is
a remarkable similarity in the results for the several alr-
planes, except that the two-engine alrplane (of considerably
lower horsepower than the others) gives relatively less
noise in the two highest octave bands. The arbltrary curve
drawn in this figure is a suggested design curve for
engineering prediction of the propeller nolse spectrum under
takeoff conditions, for transport airplanes. It 1is assumed
that the observed nolse from a propeller-driven aircraft
at takeoff is due to the propellers. The results shown
here will be duplicated only in measurements taken falrly
near the airecraft and over a hard surface. Because atmos-
pheric and terrain attenuation of sound rise with lncreasing
frequency, spectra measured over absorbing terrain, or at a
distance of the order of thousands of feet, will have
appreciably lower relative levels in the highest bands than
those shown. The relative high-frequency content of pro-
peller sound also decreases upon change from takeoff to
cruising operating conditions, but data are not avallable
to show precisely the extent of the effect.

Vortex Noise. It has been generally assumed that
the nonperiodic part of the propeller nolse (ordinarily
less than the periodic part) 1s associated with the
shedding of vortices (eddies) in the wake of the moving

FIGURE 4.1.15

Directivity pattern computed from overall SPL for a
propeller on an outdoor test stand. The directivity
is the difference in db between observed SPL in a
given direction and the SPL which would be observed
with non-directional radiation of the same total
sound power. Computed from data in Ref. 1.16.
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blade. These vortlces are a normal consequency of the
instability of fluid flow past an objJect of more or less
cylindrical shape. Under i1deallzed conditions, the
vortices form and tear away from the obstacle in regular
fashion, to form a Karman vortex trail 1.18/ as shown 1in
Fig. 4.1.18. While pressure fluctuations are registered
by a detector placed in the trall, 1t can be proved that
the vortices in the trail cannot radiate sound; thelr
pressure distributions fall off very rapidly with distance.
The sound radlated by the vortex shedding process must arise
from the lmmedliate vicinity of the obstacle, as in the
region AO'0O"B, and must be the result of the pressure im-
pulses which occur whenever the flow system of a vortex is
suddenly torn from the obstacle.

Some idea of the process 1s given by dimensional
analysis. The Iintensity of an acoustic wave 1s given by

= pg/bc ‘ (4.1.8)

where p 1s the fluld density, and ¢ the speed of sound.
Let the acoustic pressure p be measured in units of

1/2 (pu ), where u is the flow velocity past the obstacle,
which can be expressed in terms of the Mach number,

M = u/c. Then the intensity 1s

N
I = Bﬂcl_ (4.1.9)

where B 1s a coefficient which may be a function of the
Reynolds number, Re = puf /u of the Mach number M, or# /r,
where £ 1s some dimension of .the body and r the distance
to the point of observation, and also of ©,%, the

azimuth and zenlth angles of the polnt of observation
with respect to some reference axes. The symbol p denotes
the viscosity coefficlent of air.

FIGURE 4.1.16
Propeller noise spectra measured beneath several types
of 2- and 4-engine airplanes immediately after takeoff.
Data from Ref. 1.17. The chart shows the amount by
vhich the power level for each octave band differs from
the overall power level. The curve is a suggested basis
for engineering estimates of the spectrum for transport
airplanes under takeoff conditions
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For large distances, the law of conservation of
energy will require that the intensity fall off wilth the

square of the distance, as expressed by the next rela-
tion -

B(R L w0 g) = £ B' (Re, M, o, #) .
e, T2 1t 9 ;‘2’ » M, 9, .

(4.1.10)

Furthermore, the Mach number effect must occur as a
multiplier, since the sound intensity must vanish for
incompressible fluids (¢ —> °¢). Thus, the preceding
equatlion may be rewritten as

B =.f§ (Z:: M° ) B" (Re, 0, )

n
(4.1.11)

where the Mach number effect has been generalized as a
power series in M. An approximate solution will be
sought by retaining one term of the serles. It can be
shown that the exponent n = 1 corresponds to a simple
source, and n = 2 to a dipole. The simple source may be -
ruled out on the basis that the observed radiation 1s i
directional, or through a theoretical argument which
shows 1t to be 1nconsistent with the aerodynamic flow
situation. With the exponent n = 2, 1t 1s evident that
the sound intensity willl vary as u®. When the direc-
tional function for a dipole 1s inserted, the final
expression for the intensity 1is

cosQO u6
I=( (Re)<5=>- apiy .
r c

(4.1.12)
Here A, the projected area of the obstacle in the
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d%rection of fluid flow, has been written 1nstead of

{2, The coefficient OC (Re) cannot be determined from
dimensional analysis alone. In the case of a propeller
blade, it is found that the dipole radiation pattern has
its maxima on the propeller axis.

While the noise generated by vortex shedding 1is
not periodic in ordinary practlcal situations, the rate
of shedding vortices is in principle a constant in the
case of steady flow around a uniform cylinder. Strouhal
argued by dimensional analysis that the frequency of
vortex shedding from a cylinder is

u
f=Kg3 (4.1.13)

where d is the diameter. He found an experimental
value of K of about 0.185. This quantity 1s actually
a function of the Reynolds number, ﬁnd is 0.18 for
Reynolds numbers from 103 to 3 x.10%,
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FIGURE 4.1.17

Idealized Karman's vortex trail.
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Evaluation of Vortex Nolse Intenslty. The knowledge
of vortex noise 1s not yet entirely satisfactory from a
quantitative standpoint. Stowell and Deming l.lg/ experl-
mented wlith a device in which circular rods, rather than
blades, projJected from a rotating hub, and found the inten-
sity of the radlated sound to be proportional to the
projected area A and to the sixth power of the velocity,
as predicted by Eq. (4.1.12). In a later N.A.C.A., experi-
ment 1.20/, the constant of proportionallity was evaluated
from measurements on a helicopter blade. On this basis,
Hubbard adopted the engineering equation below to glve the
overall intensity level (essentially equal to SPL) of vor-
tex noise at a distance of 300 ft from a propeller, presum-
ably for those directions where the sound 1s strongest.

IL = 10 log,y ———{¢&- (4.1.14)

The value of k 1s given by 3.8 x 1072/, The symbol Vg7
denotes section velocity at 0.7 of. full radius, in ft/sec;
Ap denotes total plan area of blades, which 1s roughly
proportional to the area A of Eq. (4.1.12) if consistent
operating conditions somewhat below stall are assumed.

The relation Eq. (4.1.19) 1s the basis for the broken-line
curves showing vortex noise in Figs. 4.1.4-4,1.9. Hubbard
estimates these tentatlve results as belng correct within
+ 10 db for conditions below stall, and points out that
the vortex nolse may increase by 10 db when the propeller
1s operated under stalled conditions.

The uncertainty 1n the present evaluation of vortex
nolse may be explalned in part by recalling that the
coefficient in Eq. (4.1.12) is a function of the Reynolds
number, Evaluations currently avallable were made at
Reynolds numbers much smaller than those found in pro-
peller applications. Experiments at high Reynolds numbers
necessarlily bring in rotational nolse and are therefore
more difficult in that the rotational and vortex noise
contributions must be separated. Moreover, propeller
blades may operate at Reynolds numbers greatly exceeding
105, the value at which laminar flow in the boundary
layer 1s replaced by turbulent flow. Completely turbulent
flow generates broad-band nolse through mechanisms other
than vortex shedding, and the vortex noise analysis does
not apply rigorously.
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The Spectrum of Vortex Noise. The rotating-rod
experiments of Stowell and Deming 1.19/ and others
glve spectra in which most of the nolse energy is lo-
cated in the frequency range given by the Strouhal for-
mula, Eq. (4.1.13). (The formula gives a range of
values rather than a single value in the case of a
rotating rod, since the section velocity varies con-
tinuously from the hub to the tip.) Nolse energy is
observed over the entire audible range, however, as
illustrated by oscillograms given in Ref. 1.5. There
1s some evidence ©of peaks in the spectrum at harmonics
of the Strouhal frequencies. The spectral distribution
of the noilse needs further investigation.

Practical Importance of Vortex Nolse. It appears
that vortex noise never constitutes a significant portion
of the distant sound produced by heavily loaded propellers,
operating at tip speeds of 900 ft/sec or more. Thus, it
is not necessary to consider vortex noise in connection
with takeoff operation of transport alrplanes, and it 1s
unlikely that vortex nolse is important even in the sound
produced by transports under cruising conditions.

The intensity of rotational noise is much more
sensitive to tip speed and to blade loading (angle of
attack) than that of vortex noilse. Consequently, 1t is
always possible, by reducing the tip speed and possibly
the angle of attack, to reach a condition where the
propeller sound conslsts largely of vortex noise rather
than rotational noise. Vortex noise thus becomes the
limiting factor when an attempt is made to reduce pro-
peller nolse by reducing the tip speed and increasing the
number of blades. This point was discussed in an earlier
paragraph.

An Example of Calculating Propeller Noise. Given
the following propeller data, 1t 1is desired to estimate

(a) the SPL near the ground (hard surface)
at 500 ft distance;

(b) the SPL at that point in the 600-1200 cps

band: Four propeller blades; tip speed 900 ft/sec
(approximately Mach 0.9); 2000 horsepower input.
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From Fig. 4.1.5, the power level 1s 112 + 55 =
167 db. The direction-averaged SPL at 500 ft distance,
in free space, would be the power level less 10 log
[47w(500)2], which gilves 102 db. Near the hard ground,
pressure doubling ralses the SPL by 6 db to give 108 db,
sti1ll on a directlon-averaged basis. If the typical
directional distribution of Fig. 4.1.15 is assumed, the
SPL in the propeller plane (90°0) is 1 db less than the
direction-average value, which ylelds 107 db. This 1s
answer (a).

The given condltions resemble takeoff operation
for a large alrplane. Therefore the spectral distribu-
tion in Fig. 4.1.16 should apply. According to this
figure, the SPL in the 600-1200 cps band 1s approximately
% %b below the overall SPL, which gives 99 db as answer
b).

Sometimes it 1s necessary to estimate sound pressure
levels external to a test cell, with the propeller operat-
ing inside. For a cell which has no sound-absorbing
treatment, and which has openings looking out in a hori-
zontal direction front and rear, a first approximation
to low-frequency sound levels 1s obtalned by making a
calculation as given above, and using the space-averaged
value, since the cell disturbs the normal directionality
of the propeller. For higher frequencies, the cell
openings must be assigned the directionality of a stack
opening, and in general a proper allowance must be
introduced for sound-absorbing treatment. These topics
are reserved for later chapters.

The calculations above could also have been started
by reference to the empirical propeller-noise chart,
Fig. 4.1.14, which is approximately correct for large
propellers of two to four blades. This chart gives a
power level of 167.5 db, from which about 2 db should be
subtracted to correct from three to four blades, giving
a power level of approximately 166 db. All results would
then be less by one db than those obtained above.
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4.2 Noise from Aircraft Reciprocating Engines

Reclprocating engline noise has been studied less
extenslvely than propeller nolse, because the maximum
noise levels produced by propeller-driven aircraft, under
full-throttle conditions, are usually attributable to
the propeller. The tentative generalizations given be-
low concerning engine nolse are made on the basis of a
few observations (Refs. 1.13 and 1.7); also a ground
alrplane test; and unpublished results of tests on an
800 horsepower engine in a dynamometer test cell).

1. The nolse developed by a reclprocating engine
is produced almost exclusively by the exhaust,
with possible exceptions in cases where
unusually effective mufflers are used.

2. The noise energy of the lowest-frequency
exhaust component of a reciprocating engine
is approximately proportional to the total
power developed. Quantitatively, the power
level of thls exhaust component for an engine
without exhaust mufflers 1s not less than

Power level of lowest frequency component =

122 + 10 log, (horsepower).

(4.2.1)

On theoretical grounds, the horsepower value
used in Eq. (4.2.1) should include mechanical
losses in the engine. However, these are
usually not known. In cases where the mechan-
ical losses are large, they must be included.

3. The lowest-frequency exhaust component of
importance usually has a frequency equal to the
number of exhaust discharges per second (two
discharges occurring simultaneously are counted
as one). This frequency is usually below 300 cps.
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4. Usually the spectral distribution of noise
energy 1s approximately as follows: The power
level in the octave band containing the lowest-
frequency exhaust component lies about 3 db
below the overall power level. The levels 1n
octave bands above this one decrease at about
3.db per octave of increasing frequency. No
significant noise is produced in octave bands
below the one contalning the lowest-frequency
exhaust component. These conditions may be
typical of englnes operated at crulsing condi-
tions, and of small englnes (150 horsepower
and less).

5. In the case of. an engine of 800 horsepower
operated at full throttle, a uniform octave-
band spectrum has beén observed (equal power
levels in the octave band containing the lowest-
frequency exhaust component and all higher
octave bands). This may be typical of larger
engines under full-power conditlons. In this
case the overall power level is about 8 db
larger than that of the lowest frequency
exhaust component.

6. Directional effects are much smaller for engine
nolse than for propeller noise. The total
variation in SPL with direction is about 6 db
for the lower-frequency components of engine
noise. Thls statement probably holds for high
frequencies also in the case of an isolated
engine, but no detalled measurements for high
frequencles are avallable. In the case of an
engine mounted on an airplane, the high fre-
quency directivity will be affected by shadow-
ing produced by the airplane structure.

Simple relations for the overall power level of an
engine without mufflers are obtained by combining state-
ments 2, 4, and 5. For the case of small engines (150
horsepower or less), or engines operated under cruising
conditions, the relation 1is

Overall power level = 125 + 10 1og10 (horsepower).

(4.2.2)
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For the case of a large engine operated at full load,
the relation if

Overall power level = 130 + 10 log,, (horsepower) -

(4.2.3)

For example, according to Eq. (4.2.2), the overall

power level 1s 152 db for englines delivering 500 horse-
power under crulising conditions. According to Eq. (4.2.3),
the overall power level 1s 160 db for an engine deliver-
ing 1000 horsepower at full load.

4.3 Total External Noise of Aircraft with Reciprocating
Englnes

According to Secs. 4.1 and 4.2, the overall noise
level of a propeller increases by approximately 5.5 db per
horsepower doubling (plus 2.7 db or more for each in-
crease of 100 ft/sec in tip speed), whereas the overall
nolse level of an engline increases at approximately 3 db
per horsepower doubling. It follows from these principles
that the predominant noise source in a propeller-driven
aircraft with very large engine power will be the pro--
peller, but that engline nolse will predominate when the -
power 1s low.

This expectation appears to be borne out in the
results of a survey 3.1/ of take-off noise level of vari-
ous airplanes ranging from 65 to 5800 horsepower. In
this survey the microphone was located in the propeller
plane at a distance of 500 ft from the center of the
runway. At this microphone position the sound receilved
from both engine and propeller has approximately the
space-average value, so that directlional effects may be
neglected. It is found that the observed sound levels
for aircraft with more than 150 horsepower agree with
values predicted from the empirical propeller chart,

Fig. 4.1.14, to the accuracy of the chart. For airplanes
of 150 horsepower and less, the overall noise levels
exceed those predicted from the propeller chart, but are
in approximate agreement with levels for engine noise

as given by Eq. (4.2.2). There are, however, other take-
off noise data 1.7/ for aircraft with less than 200 horse-
power which are in agreement with propeller nolse figures
rather than with estimated noise figures. The reason

for the discrepancy is not known.
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A convenlent approximate expression for the over-
all power level of various aircraft under take-off condi-
tions has been deduced from the data of Ref. 3.1. This
relation 1is

Total take-off

Overall power ) )
) = 121 + 12 log horsepower of
(level take-off 10 aireraft

(4.3.1)

It happens that under the particular conditions found in
take-off 1t 1s not necessary to consilder propeller tip
speed explicitly. Since the tilp speed 1s not considered
in Eq. (4.3.1), this relation cannot be applied to operat-
ing conditions differing materlally from takeoff.

The broken line drawn across the empirical propeller
noise chart, Fig. 4.1.14, divides the chart approximately
into a region in which the propeller is the major nolse
source for an entire alrcraft (upper right-hand portion)
and a region in which the engine 1s the major noise source
(lower left-hand portion). This line 1s constructed by
computing, for varlous values of total horsepower, the tip
speed at which the overall propeller noise power level
equals the overall engine nolse power level given by
Eq. (4.2,2) is assumed. Operating data for small single-
engine aircraft often fall in the region in which engine
noise is important (lower left). All data used in deriv-
ing this dividing line represent average trends from which
results for a particular aircraft may differ by as much as
5 db as regards elther engine noise or propeller nolse.
Therefore, the llne as drawn on the chart wlill not 'indicate
accurately under what conditions propeller nolse 1is dominant
in a particular ailrcraft. Also, the results are averages
for reciprocating engine aircraft as commerclally produced
up to 1952, and do not apply to specially constructed units
in which noise control measures are incorporated. It has
been shown that overall aircraft nolse can be reduced
significantly by use of propellers with an increased number
of blades and by use of exhaust mufflers 1.6/.

FIGURE 4.3.1
Directional distribution of SPL for certain discrete-
frequency components of airplane noise. Measurements
50 ft from hub; ground test at cruising power. Two-
blade propeller; 1940 rpm; direct drive; 97 horsepower;
blunt tips, speed 646 ft/sec. (From Fig. 27a of Ref.l.7).
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The preceding remarks on total alrcraft noise
refer to the space average of sound output. This con-
cept 1s Inherent in the definition of power level. In
general, actual observation made 1n the propeller plane
will agree approximately wlth space-average results.
The directivity patterns of engline and propeller must be
considered 1n predicting nolse levels observed in other
directions. A typlcal situation 1s illustrated in
Fig. 4.3.1, which shows the variation with azimuth angle
of measured overall sound level and/or the levels of
selected propeller and engine nolse components for a
particular small alrplane. These results were obtalned
by operating the airplane at crulsing power on the ground
and by placlng the microphone 1n various locations 50 ft

from the propeller hub, and approximately at the hub
level.

The tentative concluslions regarding external noise
or reciprocating-engine alrcraft are summarized below.

l. For large aircraft, the overall PWL for
elther crulsing or take-off conditions is
approximately equal to the overall PWL for
propeller noise which may be estimated by
the methods given at the end of Sec. 4.1.

2. For alrcraft of 150 horsepower or less, it
appears that the overall PWL under crulsing
or takeoff conditions 1s approximately that
given for the engine by Eq. (4.2.2).

3. The SPL in the propeller plane is approxi-
mately that which would be produced by a
non-directional source having the stated
overall PWL.

4, The overall PWL for various alrcraft
under takeoff conditions is given approxi-
mately by Eq. (4.3.1).

5. The observed nolse for positions directly
ahead of or directly behind, the alrcraft
is approximately the engine nolse alone
having a PWL given by Eq. (4.2.2) or (4.2.3).
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6. The observed SPL for positions from 20° to
300 behind the propeller plane has the greatest
preponderance of propeller components. An
approximate indication of the overall SPL for
this region may be obtalned, for either crulse
or takeoff conditions by adding 5 db to the
value obtained by using the overall propeller
PWL (Sec. 4.1) and proceeding as for a non-
directional source.
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6.3a Noise-Generating Mechanisms in Axial-Flow Compressors

An axlal-flow compressor consists of a sequence of
multiple-blade propellers (rotors) operating within a duct.
Several stators, which are essentlially non-rotating pro-
pellers, are placed between successlve rotors, and possibly
at the ends of the array. Since the axial-flow compressor
is made up of propellers, the mechanlsms of nolse genera-
tion are very simllar to those for alircraft propellers as
discussed in the revised Sec. 4.1. A familiarity with parts
of that section will be assumed in the present discussion.

The theory of propeller nolse generation predlcts
that the periodic sound component (1.e. the rotational noise)
has zero amplitude on the propeller axlis. Thils 1s because
any point on the axis 1s, at all times, a fixed distance
from the steady rotating pressure pattern associated with
any one of the blades, and hence experlences no time-varylng
pressure, or sound. If this concept 1s extended to the
axlal-flow compressor, 1t appears that there should be no
propagation of sound down the duct axis. A theoretical
calculation confirms that no sound energy from rotational
noise will be propagated down the duct, provided that the
rotors, the stators, and the duct all have perfect circular
symmetry. There will be, however, a large-ampllitude pres-
sure disturbance in the plane of each rotor having the
characterlistics of an array of dipoles, one for each rotor
vane. Thls disturbance does not excite plane waves of sound
In the duct, but does excite high-order modes, the amplitude
of which falls to practically negligible values within one
duct diameter on elther side of the rotor. The theory of
the sound-pressure distribution in higher modes has been
worked out in detaill.

In addition to periodic nolse, the compressor rotor
will generate nonperiodic vortex nolse in the manner of an
airplane propeller. No phase cancellation of vortex noise
is possible, because of its nonperiodic nature, and the
vortex noise 1s therefore radiated down the duct. As indi-
cated in Sec. 4.1, the sound power radiated as vortex nois
is proportional to the projected blade area in the direction
of motion, and to the sixth power of the blade speed.

Where the duct, the stators, or the rotors, do not

have perfect axial symmetry, rotational noise will be propa-
gated down the duct as airborne sound. Since this effect
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depends upon departures from the nominal symmetrical de-
sign, 1t 1s difficult to make any general predlctions.
However, case vibrations, as dlscussed below, are important
for usual compressor design; asymmetry effects are of secon-
dary importance compared to these.

The preceding considerations apply to sound within
the duct which 1s completely airborne. In additilon,
structure-borne sound 1s important. The pressure distur-
bances around the rotor blade tips apply oscillating dipole
forces to the compressor case 1lmmedlately about the rotors.
The effect is similar to that of vibrational forces de-
veloped on an alrplane fuselage in the vicinlity of the
propeller. The case vibration wlll cause the rotatilonal
nolse to propagate along the duct walls. If vibration breaks
are installed near the compressor, this has little effect on
nolse levels at a distance down the duct. In the absence of
vibration breaks, thls structure-borne sound may be the
major source of noise within the duct at a distance from the
compressor.

The vibration of the case 1n the immedlate vicinity
of the rotors 1s responsible for most of the external noise
from the compressor. This external nolse 1s largely perilodic.
The noise chart for axlal-flow compressors, Fig. 6.7, refers
to the generation of external nolse by the compressor, and not
to the generation of noise within the duct. The effective
power levels given in the chart were obtalned by finding the
total power delivered externally, on the basls of a multiple-
point survey.* Since the external sound 1s largely rotational
noise, 1t 1s predicted theoretically that the level should
increase by 5 to 6 db per horsepower doubling, in agreement
with Fig. 6.5. It is difficult to calculate the absolute
level of the external sound theoretically because this in-
volves the vibrations of elastic plates (the case) under
complicated boundary and excitation condltions. However,
under simplifying assumptions, some theoretical results may

* Note that in the case of axial-flow compressors, the power
levels as given in Sec. 6.3 refer to the noise external to
the compressor. On the other hand, the power levels for
centrifugal compressors refer to the noise inside the com-
pressor ducts, so that the transmission loss of the duct
walls must be taken 1nto account to cobtain the external
noise.
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be obtalned. They are not intended to replace the empirical
results of Sec. 6.3 but to give further quantitative insight
into the problem.

It 1s possible to identify three important mechanisms
that contribute to the intensity of the blade rotation noise:

(1) Blade rotation itself, as in the case of a
propeller in free space.

(2) Aerodynamic interaction of the blades and
stators.

(3) Fluld flow between the blade tips and the
compressor case.

Only the mechanism associated with (1) has been evaluated
theoretically; preliminary calculations indicate that (2)
and (3} are of secondary importance. In order to evaluate
(1), 1t has been assumed that the distribution of the
thrust force along the blades 1is 1ndependent of the dis-
tance along the blades. PFurther, 1t has been assumed that
the blade width and thickness is very small, so that the
thrust force 1s concentrated on blade lines and so that
volume change effects of the alr as the blade passes may
be neglected. Then, the mean pressure in the plane of
rotation is found to be:

1/2

p, =52 (—g-—f—%— in 5) (6.32.1)

where Py 1s the rms pressure for the fundamental frequency
AP 1s the pressure rise across the plane of Totation

6 1s the ratio of the inside compressor radius Ro,

to the hub radius Rh.

The fundamental frequency is given by

s = N _(RPM)

1 5 , CpS (6.3a.2)
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where N 1s the number of blades. Harmonics of the funda-

mental frequency are generated also. The pressure for the

harmonics depends upon the assumed force versus time

character at each element of the blade dlsc; for the

assumption used in Eq. (6.3a.1), equal magnitudes are pre-

dicted for all the harmonics 1n the plane of rotation. -
(Note that this result does not agree with the empirical

information given in Sec. 6.3, in which the second harmonic

is estimated to be the frequency of maximum radiation.) -

The theoretical results above may be used to predict
the excitation of the compressor case, and thus the sound
radlated from the case. As an example, consider the
following problem:

AP = 60" HEO per stage
Number of stages = 3
Distance between stages = 3"
Ro = 13"
R, = 60
RPM = 7200
HP = 1350

Then, for each stage,

p; =1.2x 10* dynes/cm2
or SPL = 155 db re .0002 dyne/cm®
at £, = 7200 cps

The transmission loss (TL) of the compressor case is a
measure of the radiation for a glven pressure excitation.
Assume the case 1s of cylindrical construction and about
1/4" thick. Then the TL is about 30 db. The resulting
pressure outslide the case 1s thus about 125 db per stage.
According to the assumed thrust distributlion, this value
of SPL 1s valld for all the harmonicsas well as the funda-
mental. All three stages, however, are operating in
definite phase relation. Thus conservative practice dic-
tates that the combined sound pressure for the three
stages Jjust outside the case 1s the sum of the sound

priggu§gs from each stage, giving SPL = 125 db + 20 log 3
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It 1s 1nstructive to compare the above estimate with
the values predicted by the empirical relations given in
Sec. 6.3. Figure 6.7 ylelds a PWL value of 135 db for the
frequency of maximum output (the second harmonic). The
relevant area for converting the PWL to SPL is not accurately
known, but may be assumed to vary between about 2 sq ft
(corresponding to the cross-sectional area between the hub
and the case) and about 5 sq ft (corresponding to the surface
area of the case in the vicinity of the blades). Thus the
resulting SPL is between 128 db and 132 db, in reasonable
agreement with the value calculated above from Eq. (6.3a.1).

Section 6.3 also indicates a method for estimating
the spectrum below the fundamental frequency. Using the.
information given in Sec. 4.1 on vortex noise*, the spec-
trum below the fundamental may be calculated. The result
1s also 1n reasonable agreement with the empirical result
from Sec. 6.3.

* In order to use the information, account has to
be taken of the different drag coefficients and
Reynolds' number for the present example and the
experiments quoted therein.
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6.5 Noise from Ventilating Fans and Ventilation Systems

Experimentally Measured Power Levels and Spectra. The
acoustic power level of a ventllating fan in a duct may be
determined from the average sound pressure across the duct
passage. The measurements must be made at locatlons at
least several fan diameters away from the fan and the sound
pressure must be the result of acoustic energy traveling
away from the source, i.e., the reflection of the sound
back from the more distant portions of the duct should be
negligible. The power level for a fan in open air, or for
the back side of a fan which 1s connected to a duct on one
silde only, can be determined from measurements of the sound
pressure at several points on a surface in space which
surrounds the source. Thils survey must be performed in
the absence of reflecting objects. The basic principles
of both of these methods are discussed in Chapter 3.

The first method, which relates to a fan operating 1in
a duct, may be applied successfully when the duct is very
long and has sufficient sound attenuatlion to prevent re-
flections at all frequencles which are of 1mportance, or
when the duct 1s connected to a non-reflectlive termination
speclally deslgned for use in laboratory measurements of
fan nolse. A laboratory system having a non-reflective
termination, as described by Beranek, Reynolds and Wilson
5.1/, is shown in Fig. 6.5.1. A recommended modification
of this system, for future measurements 1is given in the
reference.

Measurements performed with this laboratory system
on fans of both vaneaxial and centrifugal types, with in-
put power up to slx horsepower, have led to the following
conclusions 5.1, 5.2, 5.3/.

l. The spectrum for centrifugal fans falls off
rapldly with increasing frequency. The de-
crease of power level between successive
octave bands 1s 5 db.

2. The spectrum for vaneaxial fans is nearly
uniform for octave bands 20-75 cps to 1200-
2400 cps, inclusive, but decreases in the
higher bands.
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3. The spectra on inlet and outlet sides of a
fan are similar, except that a narrow peak
protruding above the broad-band noise by
6 db or less at the blade fundamental fre-
quency, may be observed on the inlet side,
but 1s scarcely observable in the exhaust.

44, The spectra and the power level are not
significantly changed by varying the back
pressure on the fan,

5. The exhaust spectrum 1s nearly independent
of speed below the rated maximum,

6. The open inlet to the fan has very nearly
the same directional propertles as a pilston
of the same size. '

7. Reversing a vaneaxial fan has no significant
effect on the sound output.

The summary spectra resulting from the study are shown in
Fig. 6.5.2 where the ordinate indicates octave band power
level relative to the overall power level. The shaded
zones show the latitude within which variations may be
expected according to the individual fan design and operat-
ing speed.

FIGURE 6.5.1

Laboratory system for measuring noise dellvered
to a duct by one side of a ventilating fan.

fan

conical adapter

canvas vibration-isolation coupling

stralghtening vanes

measuring section

manometer location

microphone opening

adapter

exponential horn sectlion

acoustic termination

three acoustic wedges, each 8" x 24"
base, 6 1lb/ft3 Flberglas

Fiberglas lining, 6 1b/ft3, 1" thick

- adjustable back-pressure panels 5.1/
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It has been found that the overall acoustic power
level is determined by the mechanical power delilvered to
the fan. The relationship gilven in Ref. 5.2 1s based on
measurements made on two centrifugal fans. In order to
cover a range of input mechanlcal power, the fan speed
was varied. It was found that the PWL varied as 20 log HP
when the speed of a single fan was decreased below the
rated maximum value. Since the horsepower depends on the
5/2 power of the angular velocity of the fan in the range
near the rated load, the acoustic PWL varies as 50 log rpm.
However, when the PWL's of a series of different fans hav-
ing different maximum rated horsepower are compared, a
different dependence of PWL on input mechanlcal power 1s
observed., In this case, the PWL for fans operating at
thelr rated horsepower varies as 10 log HP., That 1s, the
PWL increases by only 3 db per doubling of horsepower in
the second case but as 6 db per horsepower doubling in
the first case,

From Ref. 5.3, the overall PWL, for different fans
operating near thelr maximum rated horsepower, 1s

PWL = 100 + 10 log,, HP db. (6.5.1)

For the case where the speed of a single fan 1s variled,
Eq. (7) of Ref. 5.1 is still valid. However, the correc-
tions and limitatlions to the data of Ref. 5.2, as discussed
in Ref. 5.3 should be consulted. In particular, the con-
stant 120.4 db should be 114 db.

It should be noted that a reductlion in nolse can be
obtained by using a fan having a maximum rated input power
larger than necessary for the Job to be done and then
operating it at lower than rated power. The power level
dellvered to the exhaust duct alone or the input duct alone
1s approximately 3 db less than the total PWL given by
Eq. (6.5.1)

Ventilation System Nolse level 1n a Room. When the
ventiTating fan communicates with a room through a section
of duct, the duct opening in the room becomes a source of
sound which, 1n any given octave band, has the same power
level as one side of the fan, less the attenuation intro-
duced by the duct in that band. The methods for finding
the attenuation of sound in an acoustically treated duct
are discussed in Sec. 12.2. Thus, when the properties of
the fan and of the duct are known, the sound pressure level

WADC TR 52-204 62




in the room may be found by the methods which are
employed in any case where a sound source of known proper-
tles 1s present. A method of calculating the level in
the room 1s discussed in Sec. 3.5. The quantities which
enter into the calculation are:

1. the power level of the source in the desired
frequency band

2. the directivity factor, Q, of the source in
this frequency band, 1n the direction of the
observer

3. ‘the distance, r (ft) between the observer in
the room and the source

4. the room constant, R in sq ft.

The room constant R is equal to S & /(1- &) where S
is the area of the room boundaries in sq ft and X is the
average value of the absorption coefficlient*, Ordinarily,
the chamber absorption coefficient is used. (Sec. 12.1)

The accompanylng charts facllitate evaluation of
some of these quantities 5.1/. The effective directivity
factor for the source at low frequencles 1is affected by
the location at which the duct enters the room. Four
cases may be distinguished conveniently, as shown in
Fig. 6.5.3. A duct which opens in the center of the room
volume (Case A) is assumed to radiate nondirectionally,
as Into open space, at low frequencies. This corresponds
to a low-frequency value of 1.0 for Q. At the other
extreme, radiation from an opening in the corner (Case D)
is restricted to one octant in space, with a minimum value
of 8 for §. At sufficiently high frequencies the directi-
vity 1n all cases approaches that of a piston of radius a,
but in practice the directivity factor on the axis rarely
rises above 50, The axial directivity factor for each
of the four cases 1s plotted as a function of a dimension-
less frequency parameter in Fig. 6.5.4. The quantity a
is equal to the radius of a circular duct opening, or to
L/ y7 for a square opening of width L. For a rectangular

* This quantity 1s called O in Chapter 3.
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opening of widths Lk, Ly, the value of @ lies between the
values for the corresponding square openings. The large
values of Q for high frequenciles represent beaming of the
sound 1n the axial dlrection, perpendicular to the plane
of the opening. The off-axls values of Q are much smaller
at high frequencles; for example, 1f the opening is in the
center of a wall, the value of Q for the directlion 459
from the axls 1s approximately 2 at all frequenciles.

In some cases an accurate calculation is not required,
or information regarding the absorption coefficient of the
walls may be insufficient for accurate calculation. 1In
these cases, an approximate value of the room constant, R,
may be obtalned by characterizing the room as "live"

( ®x =0.05) or "dead" ( @ = 0.4) or by some intermediate
deslgnation, and by uslng the value of & thus selected
with the known wall area. If the room shape 1s specified,
the wall area 1s uniquely related to the volume; for
example, in a cubical enclosure the wall area is six times
the two-thirds power of the volume. On this basls, the
chart of Fig. 6.5.5 has been constructed to give values

of the room constant as a functlon of room volume for four
values of the average absorptlon coefficlent which cover
the range "dead" to "live". While the chart 1s derived
for a cubical enclosure, it may be used for ordinary rooms,
but 1s not applicable to extreme cases such as that of

a long corridor.

Grille Noise. In calculating the noise produced in
a room by a ventilating system, 1t 1s necessary to conslder
not only nolse generated directly by the fan, but air-flow
noise produced at the grille opening into the room. No
extensive measurements of grille nolse are avallable. The
following tentative relations, which lndicate how the PWL
of nolse from a grille 1s expected to vary with flow
velocity and with pressure drop across the grille, are gilven
in the Heatling Ventilating Air Conditioning Guide 5.4/.

FIGURE 6.5.2

Typical octave band spectra for vaneaxial and
centrifugal fans. Shaded areas show the expected
spread as a result of variations 1n details of

fan and blade design and speed 5.1, 5.3/.
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Figure 6.5.3
Illustration of four positions for duct opening in a

room, for which the directivity factor is given in
Fig. 6.5.4, Ref. 5.1.

WADC TR 52-204 66




PWL change in db = 50 log,, (V,/V,) (6.5.2)

and V2 are flow veloclties on the two sides of the grille

PWL change in db = 25 log,, (Pe/Pl) (6.5.3)

Vi

P; and P, are the pressures on the two sides of the grille.
Also, on the basis of very limited data, a typical value of
SPL at the grille is 48 db for a pressure drop of 0.1 in.
water. If this figure 1s accepted for use with Eq. (6.5.3),
the power level for one side of the grille is

PWL = 73 + 10 log,, A + log,, P (6.5.4)

where A 1s the grillle area in sq ft and P 1s the pressure

drop in inches of water. In view of the limited evidence

on which this relation 1s based, i1t is preferable to work

from experimental measurements on a grille of type similar
to the one in questlon, rather than to use the above equa-
tions, when thils 1is possible.

Avallable data on grille nolse give no detalled
information on the spectrum of the noise. Until adequate
data are available, it is suggested that Curve D of Fig.6.11
for noilse due to air flow through a valve be used in estimat-
ing the grille noise spectrum.

Example of Estlimating Ventllation System Noise in a
Room. The application of these principles Is now illus-
trated by numerical example. Suppose that it 1s desired
to estlmate the SPL in octave bands, for a locatlion of
10 £t 1n front of the grille opening, under the conditions
which are listed below. Assuming it has been established
that the alr flow nolse at the grille will not exceed
allowable limits, we now estimate noise due directly to
the fan.

Room Data: Volume 105 cu ft. Medium~-live in the
lower two octave bands, and medium-dead in the higher fre-
quency bands. The corresponding values of the room con-
stant, from Fig. 6.5.5, are 2300 sq ft for the lower two
bands and 4400 sq ft for higher bands.

Connecting Duct: Length of duct, 40 ft. The total
attenuation of the duct, when split into several parallel
sections each with individual acoustical lining, is assumed
to be as shown in Table 6.5.1. The grille opening 1s near
the center of a room wall, and is 4 ft square.
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Fan: Centrifugal fan operated at 1ts rated power of
5 HP.” From Eq. (6.5.1), the total PWL 1s estimated as
107 db, and the PWL affecting the duct on one side of the
fan only 1s then 104,

From Fig. 6.5.2, which gives the limits of the spec-
trum to be expected, we derive the effective power levels
in the individual bands from the overall PWL of 104 db.
The individual band power levels are shown in Table 6.5.1.

The axlal directivity values are obtalned from Fig.
6.5.4 for an opening 4 ft square, at the frequencles cor-
responding to the centers of the octave bands. These
directivity (Q) values are also listed in the table.

The values of relative SPL at a distance of 10 ft
from the opening are found from Figs. 6.3.3, 6.3.4, and
6.3.5 or from Eq. (3.10), for each band, by use of the
appropriate room constant (R) and directivity factor (Q)
already determined., These relative SPL values would be
numerically equal to the SPL figures at the point of
observation 1f the grille opening acted as a source whose
PWL was zero db 1in each band.

Actual values of SPL in each band, at the desired
point 10 ft in front of the grille, are obtained by sub-
tracting the duct loss from the sum of the band PWL of the
fan and the relative SPL. These actual values of SPL are
listed in the final column of Table 6.5.1.

The resulting SPL spectrum falls off very rapidly
wlth increasing frequency in the lowest few octave bands.
Thls effect 1s often found 1n ventilation noise problems.
In the present example, thls is the combined result of
the slope of the centrifugal fan spectrum and the extreme
slope of the duct attenuation function in the lower fre-
quency bands.

FIGURE 6.5.4

The directivity factor on the axis (perpendicular
to the plane of the opening) for the four duct
opening locations of Fig. 6.5.3. Speed of sound,
c; A, wavelength; f, frequency in cps; a, radlus
of circular opening or (width /V?) for a square
opening 5.1/.
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Usually, the designer 1s given the characteristics
of the fan and the allowable sound pressure levels in the
room, and the problem becomes one of finding the attenua-
tion that must be provided in the duct system so that the
allowable levels will not be exceeded. The methods for
obtaining this attenuation are considered in Chap. 12.

In many cases, an elaborate treatment must be used if the
sound pressure level 1s to be substantially reduced in the
low-frequency bands.

Relatlion to Other Alr Flow Devices as Nolse Sources.
The same basic phenomena are responsible for nolse genera-
tion in a wide variety of fluld flow devices. These pheno-
mena 1lnclude the mechanisms by which energy of flow 1s
converted 1nto heat and into random acoustical energy in
the process of turbulence, and the mechanisms by which the
alr flow can be modulated to give an acoustlic signal hav-
ing a periodic waveform, as in a fan, propeller, turbine,
or other device with rotating blades. An understanding
of these phenomena enables the engineer to utilize prin-
ciples of noise reduction in the basic design of ventila-
tion equipment.

,

FIGURE 6.5.5

The room constant as a function of room volume,

for average absorptlon coefficient categories

"live" to "dead". Thils assumes that the rela-

tion between wall area and volume is approximately
that for a cublical room, but may be applied in
usual cases where the room shape i1s not extreme.5.1l/
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CALCULATION OF SOUND PRESSURE LEVELS PRODUCED BY A VENTILATING SYSTEM

Octave

Band

cps

20~75
75-150
150-300
300-600
600-1200
1200-2L400
2k00-4800

L4800-10000

Source
PWL in
Band
db
102
98
93

88
82

78
73

68

TABLE 6.5.1

Q R Relative Duct Resulting .
Direc-
tivity Room SPL-10' Loss Band SPL,
Factor in Front db, 10'
on Axis of Open- in Front
of Open- Factor ing of
ing (Eq 3.10) db Opening
2 2300 ~25 db 7 70
3 2300 -2k 12 62
9 4400 -21 L5 27
40 4400 -15 50 23
50 LLoo -1h 50 18
50 4400 -1k4 50 1k
50 1400 -1k 50 9 )
50 4400 -1k 50 L
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11.2 Insulation of Airborne Sound by Rigid Partitions

General Remarks. Since our ear 1s an ailrborne
sound recelver, the best insulatlon from nolse radlated
into the air 1s to interrupt the direct sound path by a
rigid partition. This then forces the sound to become
structure-borne sound for some part of the way.

This partition may surround the source or the
receiver in all directions (Fig. 11.2.la and 1b) or it
may separate a large room into two rooms (Fig. 11.2.2).
In the second case, the area of the partition wall S is
only a part of the area S; of the source room and the
area Sp of the receiving room. By multiplylng S; and
So by the corresponding mean absorption coeffliclents of
the source room and the recelver-room, we obtaln the so-
called absorption powers A and Ap. If we now consider
as given the power of the source Pp we may ask for the
mean sound pressure pp in the receiver room, or for the
corresponding energy density Eg-(energy /unit volume)
which 1is proportional to the square of Py-

We split the problem into the following steps. Due
to the source of power Po’ the energy density E1 in the
source room 1is

E, = 4P_/cA, (11.2.1)

where ¢ 1is the velocity of sound in air. (These and the
following formulae are based on the assumption that the
sound 1s distributed randomly over all regions and direc-
tions in the room). The energy density E; determines the
power Pj striking the wall under test .

P, = cSEl/u = POS/’Al . (11.2.2)

Notice that Py can and usually will be much greater than
Po, because t%e reflected energy in the souce room is
included in Py. As a result of the power P} being incident
on the wall, there 1s a transmitted power Po. This

process 1s influenced only by the construction of the wall
and 1s characterized by the transmission coefficient
defined by
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FIGURE 11.2.1

Two possible ways of shielding a recelver R from a sound source
S in the same room. In (A) the source is enclosed by a rigid
partition while in (B), the recelving space 1s enclosed.

O x

FIGURE 11.2.2

A more common situation where the source and receiver are
separated by a partition dividing the space in two.
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P =TP1 = TesE /4 = TSP /A

2

(11.2.3)

Finally, Pp .results in an energy density Eo in the re-
ceiving room for which we require

2 _ %
By =G, = oh, = (8/A) By = 4STR /AR,
(11.2.4)

The equation relating E, and P, demonstrates the exis-
tence of reciprocity; it states that if you hear a
neighbor, he hears you Just as well.

But this general law only regards the physical
part of the problem. When the physiological part is
introduced, reciprocity may not hold. Suppose a mask-
ing nolse exists in one room. Then the sound of speech
transmitted from a neighboring (quiet) room may be
masked completely; but in the quiet room, the noise level
is much lower (corresponding to the reduction of the
noise by the wall) and speech which is louder than the
noise in the source room will, after transmission through
the wal% still be heard very clearly in the neighboring
rooms.

The principle of reciprocity also may not be
applicable from the physilical point of view if we do not
regard the power of the sound source P, as the given
quantity but the energy density E; in the source room.
This 1s the case in the usual measuring techniques for
alr-borne sound insulation where we compare E, and E
by measuring the sound pressure at several points in both
rooms. In this case we get from Eq. (11.2.4)

T =EA/ES . (11.2.5)
This means that in order to find T we have not only to

compare Ej and Ep but we have to measure S and A,. Here
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we get different ratios of energy density depending on
which we choose to call the source and the receiving
room.

The absorption power Ao may be evaluated from the
measurement of the reverberation time T, in the recelving
room using Sablne's formula

A, = 0.05 ve/'r2 (11.2.6)

where Ap and Vo are the room absorption and room volume
in units of sq ft and cu ft respectively.

Since we are usually trying to minimize the amount
of sound energy transmitted to another room, we are
interested in values of T as small as possible. For char-
acterizing the quality of sound insulation, it 1s more
useful to define a reclprocal quantity and, since this
quantity varies between 10 and 10°, we define a logar-
ithmic measure called the Transmission Loss (TL) as

TL = 10 log 1/T . (11.2.7)

Calculated 1n this way, the TL 1s expressed in decibels¥,
At first 1t was assumed that this logarithmic scale would
also correspond to our subjective valuation of sound
intensity which we call loudness. Although this 1s not
actually the case, we may say to a first approximation,
that each increment of 9 db in TL 1s equivalent to halv-
ing the loudness.

* This quantity 1s internationally used, but is
called "transmission loss" in America only.
For a European Code, the British proposed to call
it reduction factor "R". In Germany the quantity
is called "Schalldammzahl"and the letter K is used.

Kosten (Netherlands) proposed the name "insulation"
and the symbol 1.
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In the same way, the quantity

NR = 10 log El/E2 db (11.2.8)

may be called the noise reduction (NR). With modern
measurement equipment thils quantity can be measured
directly. Then Eq. (11.2.5) in the logarithmic form 1is

TL = NR + 10 log S/A,. (11.2.9)

The noise reduction to be expected with a given construc-
tion is

NR = TL - 10 log S/AE. (11.2.9a)

Note that the noise reduction depends on the area of the
separating wall. The smaller this area 1s,the lower the
transmission loss which will be tolerated.

The last remark is of special importance if the
partition consists of two parallel parts, for 1lnstance
a heavy wall and a door. It would be too expensive to
give the door the same TL as the wall. Since the door,
however, has only a small surface S, compared to the
surface of the whole wall S; + Sp the power entering the
second room, consisting here of two parts,

P, = cE; (flSl +-Té32)/u

2

(11.2.10)

will not be increased very much if [, is higher than T3.
The resulting loss of TL is given by

T18; + T8,

A (TL) = 10 log”fl(sl 5,)

(11.2.11)
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If we chose a value for this quantity, we might calcu-
late for the difference between both kinds of partitions

(TL) ,- (TL) ;=10 log Ty/T3= -10 log [10720(145,/5,)-5,/5,1.

(11.2.12)

In Figure 11.2.3 this difference 1s plotted as a function
of the ratio Sl/S2 forA=1and A =3 db.

Now we may discuss the influence of the absorption
power 1n the receiving room. For measurements, we prefer
rooms with small absorption power. In this case the mea-
sured NR may be greater than the quantity we wish to
measure, the TL. In the case of a closed box installed
in a large, nolsy room (Fig. 11.2.1b), all walls are trans-
mitting. Then Ap/S 1s equal to the mean absorption coeffi-
cient and therefore 1s always smaller than 1. In thils
case the NR 1is smaller than the TL. If, for example, it
1s possible to make X5 = Ap/S = 0.5 (which is a rather
high value), we get from Eq. (11.2.9a)

NR =TL - 3 db (11.2.13)

provided that these statistical formulae are valid for
absorption coefficients which are so high. If we have
oCpo = 0.25, we get

NR = TL - 6 db. (11.2.14)

We see that proper absorption in the receiving room
has some advantage. In particular, very small amounts
of absorption power must be avoided. If, in the limit,
the absorption power in the receiving room is equal to
the transmissivity of the surface S only, i.e., by A2=‘fS,
then we find from Eq. (11.2.5), E» = Ej, or no transmis-
sion loss at all. This result may easily be understood
from the standpoint of energy balance. If the receiving
room and the wall itself present no energy losses, then
the wall may have an arbiltrarily high TL; as steady-
state is reached, the energy density at both sides of
the common wall 1s the same. On the other hand, even
large amounts of absorbing material in the receiving room
cannot result in a high noise reduction. The most we can
expect 1s to get a free-field condition in which we have
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near the wall, instead of Eq. (12.2.4)
P,/cS = TE /4

E,

. NR

TL + 6 db ., (11.2.15)

At a greater distance from the wall, the sound level

will fall off faster than the inverse square relation for
a free field. But excluding this very unusual (and expen-
sive)case, we may summarize the last results by saylng:
some amount of absorbing power in the recelving room is
necessary. An absorption power equal to half the surface
of the separating wall may easily be reached, even in a
closed box, but further amounts of absorption never would
bring more than a 9 db increase in energy density ratio.

Therefore, we see that we only get high sound level
differences with constructions of high TL.

Since the TL depends on frequency, it is not realistic
to give only a mean value. Such a mean value can be at
best a very crude order of magnitude estimate of effective-
ness. In order to define such a mean value, one must first
declde on the limits of the frequency range, the quantity
we would like to average and the particular frequencies
at which one measures values to average. In the European
| code of sound insulation measurements, the lowest frequency
i ) is given by 100 cps and the highest by 3200 cps. Below
| 100 cps measuring becomes very uncertain and, fortunately,
| the sensitivity of our ears is small. Above 3200 cps
| insulation is so good, generally, that we seldom have
| frouble. The frequency scale is logarithmic. Thils cor-
responds to the common use of octave steps or third-octave-
steps and may be Jjustified by the similar distribution of
response for different frequencies on the basilar membrane
in the 1nner ear. The most difficult question is to say
what should be averaged. It 1s usual to average the trans-
mission loss and therefore in the following [TL],, means
the TL averaged between 100 and 3200 cps over a Togarithmic
scale.

But we must realize that this kind of averaging is
Justified only 1f the loudness or the rate of nervous im-
pulses per unit of time 1s proportional to the sound level.
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We know that this assumption 1s not valid, but if we try
to take into account the loudness function, the average
TL will depend on the spectrum of the sound in the source
room. However, this 1s the situation we have if we want
to make conclusions concerning the subjective effect of
noise.

Therefore, 1%t 1s better to conslider the TL of a wall
as a set of values or a curve plotted over a logarithmic
frequency scale than to characterize 1t by a single value.

Single Wall

1. Relatlonship between the Transmisslon Coefficient and
the Transmission Impedance. In the following, we define
as a single wall each partition at which the normal velo-
city at the source side v; and the normal velocity at the
back side vp (and the velocities of all points between
them) are equal. Thus
V=V, =V (11.2.16)
This does not require that the wall 1s of homogeneous
construction. It may conslist of different sheets, e.g.,
plaster, brick, plaster. It may even contain holes.
There are many inhomogeneous constructions which work as
a single partition, at least in the low and middle fre-
quency region. But there are also constructions, as, for
example, concrete poured between plates of cemented wood-
shavings and plastered at both sides which would be
called single walls from a standpoint of construction but

which acoustically show the behavior of multiple partitions

in the most of the frequency region. On the other hand,
even for a homogeneous plate there exists a frequency

FIGURE 11.2.3

The loss in TL as a result of bullding a wall
with an area Sj of a construction having [TL];
and an area Sp of a construction having [TL]5.
The ordinate gives the necessary TL of the
"insert" (i.e. door, window, etc.) when the
relative size of the wall and insert are known
and when the maximum tolerable loss of the total
TL has been chosen.
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limit, above which the assumption of Eq. (11.2.16)

loses 1its validity. This 1limit 1s reached when the thick-
ness becomes larger than a tenth of the wavelength for

the longltudinal wave in the wall. But 1n most cases of
practical interest, this happens above the frequency
region in which we are 1nterested.

Assuming Eq. (11.2.16) 1s true, wemmy characterize
the wall by its "transmission impedance" Z4 which we de-
fine as the ratio of the pressure difference between inner
and outer wall to the normal velocity

2t = (py - pR)/v, . (11.2.17)

It is to be expected that thls quantity i1s dependent on
frequency. Thls means that, in general, we have to
consider all the quantities in Eq. (11.2.17) as complex,
involving not only amplitudes but also phases. The
transmission impedance differs from the so-called wall
impedance

Z, = pl/vn (11.2.18)

which characterizes the boundary condition for the source
room by the term p,/vy. In the case of a wave radiated
at the angle UL, which 1s the angle of incidence at the
source side, Zw 1s given by*

p2/vn = pc/cos ¥ . (11.2.19)

* Practically, the difference between Z-~+ and
Zyw 1s much greater; 1n order to get the ab-
sorption coefflcient using Z,, we have to
take into account also all losses which are
given by heat conduction and friction,
especlally if the surface 1s porous. But for
the calculation of transmlission, these effects
have no remarkable influence. Thus, 1f the
wall 1s covered wlth a layer of fiberglas,
we may spllt the whole problem into one of
absorption and one of transmlission.
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The dimensionless transmission coefficient depends
on the ratio of the impedances defined by Eqs. (11.2.17)

and (11.2.19)
T =1/ \1 + Zcos K/ pc |2
(11.2.20)

It is clear that the transmission must become total (T= 1)
1f the transmission impedance vanishes. This means that
the pressures are equal at both sides of the wall. The
transmission is zero if the transmission impedance tends

to infinity.

We see that, in general, T depends on the angle of
incidence, even if Z.is independent of 2%. This means
that the transmission loss we observe experimentally,
where the sound 1s impinging the wall at different angles,
depends on the particular angular distribution of the
sound. Also one must realize that a given surface'S
only subtends the area S cos in the direction of the
incident wave. (See Fig. 11.2.4). Therefore, when
averagling T over different plane waves, we have to mul-
tiply T with the welghting factor cos ¥*. Hence

n
T = 2 E:: \Tjk cos 12& . (11.2.21)
k=1

n

For a statistical sound distribution, as we may have in
the case of testing a wall between two reverberant rooms,
we may assume that the sound is equally distributed over
all directions. This requires the introduction of another
weighting factor sin 2*because the region between ¢* and
-+ d ¥ cuts out a zone of a sphere 21 sin & d

Then we get for the average statistical transmission co-
efficient

72 T/2

T =2 W/gcosl}sinvldl} = 2 Tcos HAsinkd > .

O‘/, cos ¥sin Vra V- )

(11.2.22)
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This may also be written

T = / Td(cos® ) =/’ Ta(sin® &)  (11.2.22a)

which 1s more convenient since Z“always appears as a
function of cos ¢*or sin ¥ or even sin?2 2> directly. Such
averaging becomes more and more dependent on the accuracy
of the assumption of random distribution of angles of
incidence the higher the TL of the wall.

2. The "mass law". The TL of any single wall depends chiefly
on the mass per unit area¥* In general light constructions

* This law was first found experlimentally by
Richard Berger in 1910 and 1s sometimes called
"Berger's Law" i1n the German literature.

— 5

/

%
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f—s .

FIGURE 11.2.4

An area S subtends an area S cos 2to a plane
sound wave incldent at an angle
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are more sound transmitting than heavy ones; and 1f it
is necessary to save weight, it will always pe difficult
to have a high TL. However, there may be cases where
heavy constructions having special defects are worse
than other lighter constructions.

To a rough approximation, the mean TL may be
calculated from the formula

(TL)m = 14 log G + 24 (11.2.23)

where G is the surface weight in 1lb/sq ft. Tablelll.2.1
shows the surface weights of some common building ma-
terials.

A further emplrical fact is that the TL generally
increases with frequency f. This may be derived from the
mass law observation on the basis of similarity. If a
heavier wall 1s better, then for a given material, the
thicker wall is also better. But in a sound field, all
thicknesses must be compared with the sound wavelength;
therefore, we have to expect a dependence on the ratio
h/) or on the product hf if we replace X by c¢/f. This
general rule also holds when, as sometimes happens, an
increase of frequency results in a decrease of TL. In
these cases, an increase in thickness also results in a
decrease of TL.*

To explain these general dependences on weight and
frequency, the simplest assumption we can make is that
the wall behaves like a mass. This means that we have
to consider the transmission impedance as a mass reactance

Z = Jum (11.2.24)

where m 1s the surface mass and w the angular frequency.
Putting this into Eq. (11.2.20) we find

T =1/[1 +<$%%§§1§) 2. (11.2.25)

* See Beranek, Leo L., Phys. Soc. Acoustics Group
Symposium p. 1-6 (1949).
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Excluding grazing incidence, we may also derlve this
result from Rayleigh's more general solution for the
transmission through a sheet of non-rigld medium having
high specific mass and small compressibility 2.1/. This
shows that we do not have to discuss transmission through
a wall in terms of its movement of an inert mass and as

a result of longltudinal waves exclted inside the wall.
The first kind of motion i1s only a special 1limit of the
second.

To compare Eq. (11.2.25) with experimental results
found for walls between reverberant rooms, we have to
average T over cos? 2 according to Eq. (11.2.22). Doing
this, we get

T= (2pe/am)®  1n[1+ (am/2 po)?]

(11.2.26)
or*

[TL] = [TL]o - 10 log (0.23 [TL]O).

random
(11.2.27)

where [TL]o is the transmission loss for perpendicular
incidence. This result sometimes fits the experimental
results quite well because it gives values of TL lower
than [TL]o and also a less rapid increase of TL with
surface mass and frequency.

However, this last equation can hardly be regarded
as the real interpretation of what happens because plotting
T against cos2 * for high values of am/2 pc, we get a
very sharp peak at grazing incidence where T bec¢omes one.

* This dependence sometimes is called the random-
incidence mass law.
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TABILE 11.2.1

SURFACE WEIGHT OF COMMON BUILDING MATERIALS

Aluminum

Brick

Concrete
Dense
Cinder
Cinder Fill

Glass

Lead

Plaster
Gypsum
Lime

Plexlglas

Sand
Dry loose
Dry packed
Wet

Steel

Transite

Wood

WADC TR 52-204
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1b/sq ft/inch of thickness

14
10-12

12

13
65

10

7-8
9-10




This dependence always has to be expected when Z-< 1s
independent of the angle of incldence or 1s nearly in-
dependent in the region of grazing incidence. We may

call this the "component effect" because 1t has as 1its
basls the fact that the normal velocity of a wall 1s only

a component of the resultant of the velocitles of the
source slde and the back side. We must reallze, however,
that the limit T = 1 for 2*= 90° infers an infinite wall
and Infinite plane waves and, therefore, cannot be realized
In practice. Furthermore, we know from wave acoustics

that in rooms, sound propagation exactly parallel to a
boundary plane can never occur.

Therefore, it seems reasonable to exclude angles
for which Eq. (11.2.28) does not hold

(2 cos c%/épc)e >>1. (11.2.28)
By iIntegrating only to a limiting angle ﬁ', we find for
1
—, )( (2 924 (os? 21 1eos2
= 5 pe/um cos ¥)“d(cos“#)=(2pc/um) 1n J'cos
cos !
(11.2.29)
corresponding to )
[TL]é’ = [TL], - 10 log 1n 1/cos® 21 |
(11.2.30) -

Now we have the difficulty that the result depends
on the cholce of the limit angle %', Taking *' = 82,50
as a value which guarantees that Eq. (11.2.28) is satisfied
for [TL], > 24 db, we get

82.5°

[TL]O = [TL]O - 6 db. (11.2.30a)

The same result 1s obtalned i1f we calculate the TL for an
angle 2* = 60° only, so we also may wrlte

[TL]600 = [TL]o - 6 db (11.2.30p)
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We call this the "60° - mass law". It involves an
essential simplification for it replaces the averaging
over all angles of incldence by using a mean angle. In
the present case where the 7T is monotonically 1ncreasing
with 2%, the choice of 2*= 60° 1s reasonable.

It would seem better to choose 2¥ = 45° because this
angle 1s in the middle of the 2* range and has the highest
welghting factor (cos 45° sin 450 = 1/2). 1In the present
case we get

[TL]45O = [TL]O -3 =20 log G - 20 log f - 31 db
(11.2.31)

which also corresponds to the average T value if we
restrict the 2*region from 0° to nearly 70°. This "450-
mass law" fits the experimental results for light construc-
tions quite well. By averaging over the frequency region
from 100 to 3200 cps (which means replacing f by the
geometric mean of 100 and 3200 cps),

[TL]45’m = 20 log G - 24 db. (11.2.32)

where the second term agrees with that 1n the empirically
determined Eq. (11.2.23).

For higher values of G, all formulas which we have
derived from the assumption of Eq. (11.2.24) glves TL's
which are much too high., Therefore, we have to look for
other reasons to explaln this discrepancy.

3. The Influence of Stiffness. It seems likely that

stiffness may be of importance. If we try to move the wall

very slowly, we feel its stiffness only as the reactlon to

the driving force. This stiffness 1s given by the support-

ing or damping of the wall at the edges and also wlll be of
importance 1f a very low frequency sound pressure 1s driving

the wall. However, several authors have observed higher TL's

at low frequencies than those corresponding to mass law 2.2,2.3/.
Although thils problem has not been solved theoretically,

1t seems probable that such deviations may be accounted

WADC TR 52-204 ‘ 91




for by stiffness. But cases where stiffness gives an
increase in the 1insulation power must be regarded as ex-
ceptions for the present. Usually stiffness 1s a dis
advantage because the reactive forces due to stiffness
and those due to mass are not added. However, because
of thelr opposite phases they compensate for each other.

(a) Resonance. There are two kinds of effects
where this happens. The first 1s well-known in acoustics
as resonance, and means that the periodicity in time of
the driving forces equals the periodicity in time of a
free motion, 1.e., a motion possible without external
forces. If we have a bar of the length 4 supported at
both ends, the resonance 1s given by the condition

L =2p/2 (11.2.33)

where,hB is the wave length of the bending wave correspond-
ing to the same frequency. Formally we have the same
condition for an organ pipe open at both ends or for a
tube closed at both ends

£ =),/2 (11.2.34)
where,ho 1s the wavelength 1in air. But there 1s an
essential difference between the two cases: 1n the case

of the propagation of the longltudinal waves in a tube, -
the wave length 1s inversely proportional to the frequency

Ao =¢/f (11.2.35) .

whereas in the case of a bending wave,it 1s inversely
proportional to the square root of the wave length

Ag = Vu B/m }J2w/f (11.2.36)

or, the phase velocity of bending waves 18 proportional
to the square root of frequency

N
cB = 7B7m yvenf
(11.2.37)
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In these equations, B is the bending stiffness. For a
rectangular bar with Young'!'s modulus E, height h and the
breadth b,

B =Ebhd/12 . (11.2.38)

If we substitute m = f>bh and introduce the veloclity for
longltudlinal waves

ep = 7VE/p, (11.2.39)

we can write instead of Eq. (11.2.36)

Ag = /A8 e/t . (11.2.40)

In the case of plates, Eqs. (11.2.38), (11.2.39) and
(11.2.40) should be modified because of the hindered
lateral contraction in one direction. Taking this into
account, we have

B! = Ebh3/12(1- p?) (11.2.38a)
ert =/5/p (163) (11.2.39)
Ag' = /1.8 e b/t (11.2.40a)

where p is Poissors ratio. Since this number is 0.3 in
most cases, the differences between these two groups of
equations, especlally between Egs. (11.2.40) and (11.2.40a)
become so small that we may neglect them and speak simply
of B, cf, and A g only*. Furthermore, these values may
depend much more on the individual variation of samples

* In the avallable handbook tables of sound ve-
locities, 1t 1s not even stated whether the
longitudinal velocity 1n a bar, a plate or an
infinite elastic medium 1is meant.
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of the same material for such things as concrete, brick,
and timber. For exact studles, 1t 1s recommended that

c1, be evaluated by measuring the lowest natural frequency
f1 of a bar. Then cy, 1s given by

£, = .45 c /g (11.2.41) ’

which follows from Eqs. (11.2.33) and (11.2.40). For
rough evaluatlons,the data 1n Table 11.2.2 may be used.

TABLE 11.2.2
SOUND VELOCITIES FOR LONGITUDINAL WAVES

Glass 18,000 ft/sec
Steel 17,000 ft/sec
Aluminum 17,000 ft/sec
Timber (fir, length-

wise 16,000 ft/sec
Concrete 12,000 - 15,000 ‘'t/sec
Bricks with mortar 8,000 - 15,000 :'t/sec
Plywood 10,000 ft/sec ]
Asphalt 7,000 ft/sec
Porous Concrete 4,000 ft/sec
Atr (20°C) 1,130 ft/sec

FIGURE 11.2.5

The bending wavelength A as a functioh of frequenc
f (in kc/sec) for plates of thickness h (in inchesg.
These curves apply to steel and aluminum, for which
cr, = 17,000 ft/sec.
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Furthermore, Figs. 11.2.5-11.2.7 contain graphs for the
dependence of length of a bending wave on frequency for
plates of different thicknesses for steel and aluminum,
concrete and plywood. From these graphs we also may find
the natural frequency of a rectangular bar supported at
the ends or a plate supported on an opposite pair of edges
if we remember that the wavelength is the double of the
length .

For the case of plates of length 1% and breadth {.,
usually the four edges are supported. Then Eq. (11.2.335
must be changed to read

A = 2/1/0,0% + (1/2,)2

(11.2.42)

From Fig. 11.2.8, the value 7\3 may be found for plates

of lengths and breadths between: 0.2 and 20 feet. The
lowest natural frequency may be found either from this and
the graphs in Figs. 11.2.5-11.2.7 or by using directly the
formula

f11 =045 ¢ b [(1/n_i)2+ (l/ry)all.

(11.2.43)

FIGURE 11.2.6

The bending wavelength A as a function of frequenc
f (in kc/sec) for plates of thickness h (in 1nches¥.
These curves apply to concrete, for which cr, =
12,000 ft/sec.
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Let us look at two examples: for a steel plate of
dimensions £y = 6 ft, 4, = 3 ft and h = 1/8 in. (which
may occur in machinehoodg), we find wilth cp, = 17,000 ft/sec,
a frequency below the region of audibility and far below
the region of 100-3200 cps. But 1f we take a common con-
crete wall of 4 in. thickness with £y = 72 ft and_fy = 8 ft,
assuming cy, = 12,000 ft/sec, we find a frequency of 40 cps.
Certalnly walls and plates are seldom.only supported at
the edges which means that only the transverse motion is
hindered but not the slope at the boundary. If we assume
that the slope at the boundary is also hindered, that the
plate 1s really clamped, we have to expect natural fre-
quency tones more than an octave higher. However, clamp-
ing actually occurs very seldom. Usually, the boundary
conditions correspond more to supporting than to clamping.
Then the lowest natural frequencies are in the low frequency
range and an octave below thils natural frequency we may
say the stiffness alone controls the transmissivity of
the wall.

On the other hand, we cannot conclude that above this
lowest natural frequency the wall 1s mass controlled. This
would be the case 1f only thils lowest type of natural
mode existed. But slnce a plate 1s a two-dimensional
continuum, we have to consider a doubly infinite number of
natural frequencles given by

£ = 0.45 crh /e )% + (m//.y)g]

(11.2.44)

FIGURE 11.2.7

The bending wavelength A as a function of
frequency £ (in kc/sec) for plates of thick-
ness h (in inches). These curves apply to
plywood, for which c¢; = 10,000 ft/sec.
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DIRECTION OF
BENDING WAVE

REFLECTED / /
/ / 2 TRANSMITTED

INCIDENT /

/

VIBRATING PANEL

FIGURE 11.2.9

Sketch showlng how the coincidence effect operates

when a sound wave in air, whose wavelength is A ,
impinges on a plate at the angle # . When A/sin?

is equal to the wavelength of a bending wave in the
plate, the TL becomes quite small.
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and so we would have to expect the occurrence of
resonances 1n higher frequency reglons too. Indeed, for
very undamped systems like a bell, this is the case.

However, 1f there are energy losses elther in the
plate or at the boundaries, we know by experience, or on
the basis of an asymptotic law derived by Schoch 3.4/,
that the higher natural modes have only a small 1 uence,
Then a plate on which a sound wave impinges perpendicularly
acts like an 1nert mass the higher the frequency of sound
is compared to the lowest natural frequency of the plate.

Summarizing, stiffness 1s desirable only if the
lowest natural frequency 1s above the frequency region in
which we are interested. This condition 1s usually diffi-
cult to fulfill. Thus, we must make the natural frequencles
of walls as low aspossible. This means we should construct
walls of small stiffness but heavy mass.

(b) Trace Matching (Coincidence Effect). The same
rule as above applies because of another effect, where
inertia and stiffness also work against one another and
which seems to be of greater importance since it may
happen in the middle of our frequency reglon. If a plane
sound wave impinges on a wall at oblique 1ncidence then
the pressure 1is working with opposite phases in the dis-
tance of half the "trace-wavelength"A /2 sin /. So
the plate 1s forced to be deformed with the same perlodi-
city as shown 1in Fig. 11.2.9. For any observer moving
with the trace velocity cy/sin 2* along the plate, the
deformation appears the same as we get 1f the plate 1s
periodically supported at distances of A, /2 sin 2f. If
this periodicity in space of the driving forces agrees

with what the plate would present without forces, 1i.e.,
if

)o/sin Y= g, (11.2.45)

we have to expect total transmissivity Jjust as in the case
of resonance. Now by putting this into Egs. (11.2.36) and
(11.2.40), we find that this "coincidence" or, as we may
say more precisely, this "trace matching", happens for
special combinations of frequency and angles of incidence
glven by

f = (co?/zw s1n° 2*) / m/B (11.2.46)
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and £ = 0.56 c_°/e;h sin® 2 (11.2.46a)

Furthermore, since sin varies between zero and one,
we may find these "trace matchings" only above a critical
frequency given by

£, = (e 2/2m) ¥/ m/B (11.2.47)
or £, = 56 c02/cLh (11.2.47a)

In Fig. 11.2.10 these frequencles are plotted as a
function of the thickness for different materlals. The
region where trace matching 1s possible is to the right
of these lines. We see that it 1s posslble over the whole
frequency range for thick walls and that 1t 1s impossible
only in thin plates.

The question arises as to how this statement can be
in agreement with the general dependence on surface weight
found empirically. To discuss this problem more quantita-
tively, we will again consider the transmission impedance
which can be defined for a wall of infinite length on which
an infinite plane sound wave 1is incident. In this case

we get 2.5/

I

Z¢ = Jom - JB sin® o2 a)3/co4 (11.2.48)

j or fm (1-£2 sinuzl/Tcg) (11.2.48a)

The first term glves the inertia reactance and 1s pre-
dominant below the frequency of trace matching. The
second term glves the reactance of the bending stiffness;
this term increases wilth the angle of incidence, being
zero at perpendicular incidence, and is proportional to
the third power of the frequency. From simple resonance
phenomena we are accustomed to a stiffness reactance
inversely proportional to the frequency. But this is
st1ll the case here. The f3 dependence is overcompen-
sated by the fact that the stiffness of a beam supported
at 1ts ends 1is inversely proportional to the fourth
power of the length of the beaﬂ and tﬁis length is given
by co/2f sin ¢£; hence B —1/L* ~1/f4,
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From Eq. (11.2.48a) we get for the TL

[TL] 4 = 10 log [1 + (7fm cos ?JL/pco)e(l-f2 sinuzf/fc)e].
(11.2.49)

In Fig. 11.2.11, a map is given showlng contours
of equal TL over a [log f - c0s2 2*] plane. Dark reglons
indicate good sound insulatlion; light regions, poor sound
insulation. For 2* = 0° we have a monotonic increase of
TL corresponding to the 0° mass law. There is, in general,
a decrease from bottom to top due to the component effect.
The trace matching effect cuts a deep valley beginning at
the point (f.,0) and curving asymptotically to the (cos2 2= 1)
line. At the left of this valley the wall 1s mass controlled
while at the right 1t 1s stiffness controlled.

Since for a glven material and a homogeneous wall,
stiffness also increases wilth thickness with the third
power, we see that the heavier wall insulates better also
in the region where stiffness predominates. Since the
specific material constant, i.e., the longitudinal sound
velocity cy, only varies between 10,000 and 18,000 ft/sec
for most materials in which we are interested, 1t
has been very difficult to declde 1if the empirical
dependence on welght means a dependence on mass only or
if stiffness 1s a factor too. From Figs. 11.2.10 and
11.2.11 we conclude that in most cases of walls in bulld-
ings, stiffness must be predominant except at perpendicular
or near perpendicular incidence. The special values for

FIGURE 11.2.10

The critical frequency f. plotted as a
function of the plate thickness h (in
inches) for which the coincidence effect
1s possible. At this frequency, the TL
is quite small.
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which Filg. 11.2.11 has been calculated corresponds to a
plywood panel of 0.8 in. thickness. But the type of de-
pendence may be regarded as general.

For comparison with measurements and also for most
of the practical applications, we are interested in the
average value for a statlstical distribution of angles
of incidence. This requires putting Eq. (11.2.48a
into Eq. (11.2.20) and then integrating over sin2 2! cor-
responding to Eq. (11.2.22a). This integration has
been carried out omitting only a small reglon above
f = f,. The results are given in Fig. 11.2.12 using the
dimensionless parameters

£ = f/f, (11.2.50)

¥

c wfcm/pco (11.2.51)

The last parameter determines the TL for the critical
frequency and perpendicular incidence

- 2~
[TL]o = 10 log (1 + a,C )= 20 log aé

C
(11.2.52)

The results are shown 1n Flg. 11.2.12 and can be
used to give a general idea of what can be expected for
very large, undamped walls. The experimental results
never show such a pronounced valley Jjust above f,. This
may be easlly understood if we plot ‘T as a function of

FIGURE 11.2.11

Contours of equal TL on a cos® ¥ - frequency

plane. The "valley" at the right is a result
of the coincidence effect.
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TL vs. the frequency parameter £ = f/fc, for various values of
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sin2 ¥ and see that this curve again has a sharp peak at
the angle of trace matching. We may write the expression
for T as

2
T=1/[1+ (¢/5)°] (11.2.53)
where € 1s the relative varlatlon of the abscissa with
sin® p =1/t (11.2.54)
€ =sin® 2% - 1/¢ (11.2.55)
and 2 & 1s the bandwidth, which in the present case 1is
§=1/12 a ey 1-1/¢]. (11.2.56)

It 1s not important that the dependence on & given by
Eq. (11.2. 53? only holds for a small region because the
integration we have to execute gives

-1 -1
f +€./é = d[tan 62/6+ tan 61/6]

(11.2.57)
or with sufficient accuracy
T=7s (11.2.57a)

as long as the limits €, and €] are greater than 3 § .
But these restrictions are poss%ble only for higher fre-
quencies where trace matching no longer occurs at
grazing incidence. And in thils region we would have to
expect

[TL] = 10 log (2 0 t° /T = I/E /m) (11.2.58)
=(1/2) [TL] , + 20 log (£/f) - 2. (11.2.58a)
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It seems plausible that such sudden changes of transmis-
sivity with the angle of 1ncidence will not really occur
and the assumption that under the conditions of trace
matching total transmissivity wlll be reached must be
violated; the conditlons for trace matching must be also
violated if we take into account the finite length of
the wall or any kind of losses elther 1n the wall itself
or at its edges.

We can treat the inner losses by introducing a
complex Young's modulus Instead of the usual real modulus

E
E=E(1+1n) (11.2.59)

where n , the loss factor, characterizes the phase shift
between strain and stress and from experiment may be
regarded as independent of frequency.

With this complex modulus the transmission impedance
becomes a complex quantity also, given by

Z¢= \lBa)3 sinuvl/cou-+ Jlam - B> sinu f‘/co)*].
(11.2.60)

Putting this into Eqs. (11.2.20) and (11.2.22a), we again
may find Ty and finally TL. The results of this even more
troublesome calculation are given in Fig. 11.2.13 for the
case of @, = 100, 200, 400 and 800 corresponding to [TL]ge
= 40, 46, 52 and 58 db.

The behavior at high frequencles agaln may be under-
stood by looking at the neighborhood of the peak only.
Here first the peak 1ltself 1s lowered to the value

Topax = VI + N0, g/ - 1/¢ 12 . (11.2.61)

FIGURE 11.2.13

TL vs. ¢ for various values of (X, when inner
losses are lntroduced into the plate.
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If we now write
T = T, /11 +€%/8%

(11.2.62)

and change S to

S=(1+ A, £/1-1/8) / (2 @ ¢® 1-1/¢)

(11.2.63)

we get for high frequencies

Ter ST =w/[2 € &2 /118 + 2 B( &3-69)]
(11.2.64)

or

[TL] = 10 log [20 &2 /1-1/6 (1 + §& &/1-1/8)/7]

(11.2.65)

For )z = is identical to Eq. (11.2.58); for
)za;c € V1-1/€ > 4, Eq. (11.2.65) becomes
[TLI=[TL] ., + 30 log(f/f )-10 log £/(f c~£)-10 log @/)y-2

(11.2.65a)

oc

For a ro evaiuation, the third term may be neglected.
Equation (11.2.65) also vanishes asymptotically but the
first order theory of bending waves which have been used
is valid only as long as A >6h. This will be the case
1f € = 3.24 ¢y, h/coAB <0.5§ c1/cos for concrete where cp=
12,000 Tt/sec, this means & < 5.9.

The most essentlial fact which may be seen from
Fig. 11.2.13 1s that the insulation power increases again
in the region sufficlently far above f,. One of the
physical reasons for this behavior may easily be understood
by looking at the contours of Fig. 11.2.11. There the
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"valley of trace matching” becomes smaller and smaller.
This is connected with the fact that the "peaks" at both
sides become higher and higher but the latter alone would
be of less importance because the tops scarcely influence
the result. In the case of inner losses, the bottom of
the valley increases in the region of higher frequencies.
This general behavior is in agreement with experimental
results, but the valley in the neighborhood of f, 1s not
as deep and the slope above f, 18 not as large as would
be expected. Also the influence of damping, which should
be very high, has not yet been confirmed. It seems that
the energy losses at the edges and the finite length of
the wall are of more importance. This finite length has
to be compared with the wavelength of bending waves at
the critical frequency, which means the wavelength 1in alr
also. Thls may be the reason why pronounced trace match-
ing effects never have been found with thick, heavy walls,
e.g. brick walls, where the critical frequency is below
100 cps. Here the wavelength at 11 ft 1s of the same
order of magnlitude as the length and breadth of the wall.

Generally speaking, we may avold the trace matching
effects by either use of very thick and stiff walls or by
use of walls which have small stiffness, but not too
small a mass. For homogeneous plates this 1s a question
of thickness. For example, we may say that walls of
porous concrete of thickness from 1 in. to 3 in. are
dangerous since the critical frequency 1s in the middle audio
range. Also for wooden plates of common thicknesses the
critical frequencies are in the reglon of interest.

Fig. 11.2.14 shows the measured TL for a plate of about
5/ in. thickness. By cutting grooves in the panel, that
1s, by decreasing the stiffness without remarkably alter-
ing the mass, it was possible to increase the critical
frequency above the reglon of interest and so to improve
the insulation 2.6/.

The decreasing of the stiffness not only increases
the criltical frequency, i1t also decreases the lowest
natural frequency, which is a further advantage. As may
be derived by comparing the formulas for the lowest
natural frequency for a bar or a plate only supported
at two opposite edges

£, = (1/24%) yB/m (11.2.66)
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(following from Eqs. (11.2.33), (11.2.36), and (11.2.47),
£, £, = (c /2 9)2 (11.2.67)

This 18 the square of the natural frequency of an open
organ pipe of the length & . Equation (11.2.62) may also
be used to evaluate fc experimentally by measuring fl.

Another possibility for evaluating f, 1s by measur-
ing the static sag € p5x due to its weight of a bar or plate
of length & supported at the ends. This 1s proportional
to the surface mass and inversely proportlional to the
bending stiffness

m
Conax = 5 mg L /384 (11.2.68)

where g 1s the acceleratlion of gravity. Combining this
with Eq. (11.2.47), we find

2 P
£, =385 c, {m/lowlz g

(11.2.69)
or since o and g are glven constants
_ 2
£, = 90000 /[max/i (11.2.70)

where ¢ pox 18 given in inches and £ in feet. This equation
18 of special interest because 1t shows that a plate sup-
ported at 6 ft intervals should have a sag of at least

2.5 in. if the critical frequency shall be above 4000 cps.
Certainly such plates could never be loaded. But in all
cases where plates which are not too heavy are to be
installed for noise abatement only, this rule should be
observed as far as possible,
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FIGURE 11.2.14
TL vs. frequency for a single panel and for the same

panel when the stiffness was decreased by cutting
grooves into one side of the panel.
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Double Walls. Improvement by a Second Rigid Partitilon.

To attack the problem of double walls, first we
may treat the case as one where a rigid partifion 1s pre-
sent. For example, the rigid partition may have been
constructed for structural reasons but was found to be
poor with respect to sound insulation qualities. From
the results derived for a single plane wall we may con-
clude that we would have to 1ncrease the welght of the
wall. But even if it would be possible to double the
weight of the wall, we would gain only about 4 db for the
mean TL according to Eq. (11.2.23). In practice, we are
able to add only about a fifth of the original weight and
so as long as the second wall 1s fixed rigidly to the
first, we can obtaln at most a 1 db improvement.

But we may galn an appreclable 1improvement, at least
for higher frequencles, 1f this additional partition 1s
separated by an alr space of several inches. It 1s plau-
sible that such a fourfold change of medlum results in
better insulation than the twofold change 1n the case of
a single wall. However, there are exceptions where we
do not improve the sound insulation, but rather decrease
the sound insulation over that of the original wall.

In general, we have to expect that the resulting
transmission coefflcient now will depend on the trans-
mission impedances of both walls, Z ; and Z 5, and on
the distance d between the walls. Generallzlng a very

elegant representation given by London 2.7/, we may write
instead of Eq. (11.2.20

Lt Zeq Zep €05 o4ud cos e | .
——— 08 + l-e
2 p.c 2 2
e P,

=11+

1
T

(11.2.71)

First we may see that the third term vanishes for d = O.
In this case we get Eq. (11.2.20) where both impedances
are simply added. If both impedances are mass reactances,
the wall behaves like a single wall of mass (m; + mp).

If both 1mpedances are bending stiffness reactances, they
are added also. But in this case, two plates of the same
material with thicknesses hy and hp, do not behave as one
plate of the thickness (h; + hp) because the bending
stiffness 1is proportional to the cube of thickness; here
the possibility of tangential motlion of one plate agalnst
the other decreases the stiffness in the ratio
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(n, +1h,)3/(n3 + 1),

Since we are interested only 1n very large values
of Zr1 and Z o, the product Z 1 Z o 18 always a
large quantity. Therefore, a small value of ad 1s suffi-
cient to make the third term equal to the second. We may
expand the expression in brackets in the third term for
small od and obtain

1-g~2Jud cos e _ 23(wd cos /c) + 2(wd cosZﬁ/c)E .

Now considering Z ¢ 1 and Z T » to be pure reactances, we
may split up Eq. (11.2.71) into real and imaginary parts

2. .2 cost 9 o o (Z‘I‘l + 2 p) cos?d

Tl T2 2
1/c= (1 + wd°)" + (
5 p2 cu 2pc
Zvq ZL(.2 cos3z}-wd 2
+ 57 ) (11.2.71a)
2p ¢

Now if Z+o 1s a mass reactance and Z<¢y 27 Z o, the second
term vanishes at a frequency given by

2 2 |
o, = /pc?/md cos® - (11.2.72)

For £ = 0, this frequency corresponds to the free oscilla-
tion of a mass mo combined with the resilience of the alr
space ch/d. Furthermore, 1t can be derived that the
resilient reactance of such an alr space 1s 1lncreased by
the ratio 1/cos X if the sound impinges at an oblique
angle and lateral motion in the air space is not hindered.

But if lateral motion in the air space is hlndered,
which always may be assumed when some absorbing material
is put into the alr space, we have to set cos 22 =1 in
Eq. (11.2.72), regardless of the angle of incidence.
Furthermore, if we express mo by the surface welght Go
in 1b/sq ft and the thickness d in inches, we find

£, = 170/ ,/Ged . (11.2.72a)
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If both reactances can be assumed to be pure mass
reactances and the surface welght of the first wall Gp
is not much greater than Gp, we have to substitute for
Go the "resultant surface weight"

Gheg = G0/ (G + Gg) . (11.2.72b)

In this case, both masses osclllate out of phase with

the ratio of the amplitudes of oscillation 1nversel¥
proportional to the ratio of the weights. At this "zero
mode" frequency of the double wall, the transmission loss
is very small; for two equal mass reactances the TL may
be zero. In the nelghborhood of this frequency, the
double wall 1is worse than a single wall even of the welight
of the heavier partition only. Thus the second partition
has not improved the sound insulation.

The first step 1n calculating a double wall construc-
tion 1s to make the product of God or Gregd so large that
fo 1s below the region in which we are 1nterested. In
most practlcal cases, 1t will be sufficient to choose
fo < 54 cps; this means that we have to make

G,d > 10 1b in./sq ft . (11.2.73)
The only way to save welght 1s to enlarge the distance 4,
and even this holds only 1f d is not too large, as we

will see later.

One octave above f,, the second term in Eq. (11.2.7la),
1s very much greater than the first. Comparing the cor-
responding TL with that given by a wall of Z ¢ only, we
find that the improvement of transmission loss 1s

A [TL] = 20 log (wzdm cos vace) = 40 log (mymo) .

(11.2.74)

2

If the lateral motion 1n the alr space is hindered, we
may replace @y by ©yo3 the improvement of TL becomes then

A [TL] = 40 log (f/f_ ) . (11.2.74a)

This very simple formula allows a rough evaluation of the
slope of TL vs frequency in the region of f/fOO from one
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to two and sometimes to even three octaves above oo

But then the slope of TL, which would be 18 db/octave

1f both walls follow the mass law, decreases. One of

the reasons may be s&e? from Eq. (11.2.71). The expres-
sion (1l-e-2Jjwd cos */C) only increases wilth frequency for
small wd, but it 1s never greater than 2. Thils highest
value occurs at

(o]
f(2n-+ 1), 87 (2n + 1) Id cos &
(11.2.75)

or when lateral motlon in the alr space 1s hindered, at

flon +1),0 = (2n + 1) c/hd (11.2.752a)
The corresponding highest values of the improvement in
TL are given by

A [TL] = 20 log (axnz/poc) cos 2¢. (11.2.76)

This improvement i1s 6 db higher than the TL we would
expect from the second wall alone. The stralght lines
given by Egs. (11.2.74a) and (11.2.76), the latter calcu-
lated for 2* = 459, may be used as upper limits for the
improvement by a second partition.

But we have to expect that between the frequencies
of maximum transmission loss, given by Eq. (11.2.75),
there are always frequencles at which the transmlission
loss is very small, or even zero for two identical
partitions. For Z‘fl >ow Ms» these frequencles are glven
by

£, =mne(l + pd/#gnemz)/Ed cos & (11.2.77)

or approximately

£, = nc/2d cos 2. (11.2.77a)
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The difference between Egs. (11.2.77) and (11.2.77a) 1s

of interest only if the minimum transmission coefficient
must be calculated. Equation (11.2.77a) is true when

the sound pressure in the ailr space at the opposite points
of the walls 1s either in phase or 180° out of phase.

For 2* = 0, the condition becomes

£, = nc/2d (11.2.77v)
which 1s the well known formula for the elgenfrequenciles
of one dimensional sound motion between parallel rigid
walls. Therefore we may call the f, the resonance fre-
quencies of the alr space and fy5 the resonance frequency
of the double wall.

With increasing separation of the two partitions,
the lowest of these resonance frequencies decreases.
This 1s the reason why increasing this distance may not
always be helpful. If, for example, we want to avoild
the case where f; becomes smaller than about 1000 cps,
we should keep

d <« 7 in. (11.2.78)

Again Eq. (11.2.77b) has to be used instead of
Eq. (11.2.77a) if the lateral coupling in the alr space
1s hindered. If this 1s done by a porous material, the
difference between minima and maxima of TL in this
frequency region will decrease.

Influence of Absorbing Material in the Alr Space.

As has been shown by London, in most cases we would
not expect any improvement in sound insulation by an
additional partition without introducing any absorption
The reason 1s that for each frequency above fo, (n + 1
angles of incldence exist for which total transmission
occurs. By averaging over all angles, the sound trans-
mission in the neighborhood of these angles predominates
and results in an average transmission coefficient that
is higher than that for the single wall. This may be
substantiated 1n a manner similar to that shown for the
problem of transmissivity in the case of trace matching.
As 1n that case, it may be shown that the results for
the average transmission coefficient are influenced
strongly by any kind of energy losses.
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To get agreement between the experimental data
obtalned with reverberant rooms and theoretical calcu-
lations, London introduced external friction terms in
the 1mpedances of the partition walls which he assumed
to be inversely proportional to cos 2. There is no
physical evidence for such resistance terms and, there-
fore, the physical properties of walls offer no data for
the evaluation of these resistances.

Another possible way to introduce energy losses
is by means of a complex Young's modulus, as was done in
the case of trace matching effects. But here also an
adequate value of the loss factor can only be found by
experiment and must be assigned a much higher value than
the loss factor corresponding to the materlal alone.

The only kind of energy losses which we are able
to calculate from measurable physical data are those
which occur when the space between double walls 1is filled
with porous material. The theory of those materials has
been developed to such a degree (see Sec., 12.1) that
sufficient agreement between theory and experiment has
been achlieved. We are interested only in porous materlals
that do not make an elastlic connection between the walls
by virtue of theilr skeleton. Under this assumption, we
need only two quantities to characterize the porous ma-
terial. The first 1s the propagation coefflcient for
propagation perpendicular to the walls inside the porous
material, which 1s assumed to be a complex quantity

Fa)
k, =k, - J g, (11.2.79)

The second 1s the characteristic impedance of the porous
material, which 1s defined by the ratio of sound pressure
to the component of the velocity perpendicular to the walls
for a propagating wave

N

2, = p/vx . (11.2.80)

This also is a complex quantity. With these definitions,
we find for the transmission coefficient
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T= [l+(Zl+Z2)cos ))V2Pc ] cosh(-,lecxd)+[ (Zl+22)/2£x+zx cos %/2pc

2 S
+pc/2Zx cos V+ Z,Z

o, cos #/Eéxfc] sxinh(‘jﬁxd)l—2 .

(11.2.81)
Fortunately for most practical applications the last term

predominates so that we may simplify the cumbersome ex-
pression in Eq. (11.2.81) to

A
sz pe

A
sinh(J kxd)

Z, Z, cos *

(11.2.81a)

and write for the transmission loss of the whole con-
struction

A
[TL] ={20 log ——2 sinh(J k d)

Z. cog V' 22 A
+ 20 log|x= sinh(J kxd).

efc Zx

(11.2.82)

Il
n
(o
-
O

4]

Finally, we get for the improvement of the transmission
loss given by the second partition and the air space
fi1lled with absorbing material

A
Z, sinh (J k_d)
[TL] = 20 log|—2—x X

2

(11.2.83)

WADC TR 52-204 122



To simplify the theory, 1t seems reasonable for the
present problem to neglect the small vibrations of the
fibers. These vibrations are of importance at low fre-
quencies only. Then we may write

A

k, = [(X- sinezg) - Jro/w p]l/2 /c

X
(1‘1.2.84)
and 2 _[X-Jgr /wp] pc/o
X [( % - sin® ) - gro/eplt/?
(11.2.85)

Here o 1s the porosity, i.e. the ratio of alr volume
inside the porous material to its total volume, for which
a mean value of 0.8 may be used. Nor will taking o =1
for simplicity change the results seriously. More 1m-
portant i1s the structure factor 72X which may vary between
1 and 10, or even 25. For fiberglas blankets, the lower
limit is usually appropriate. But the most important
quantity for characterizing a porous material 1s 1ts
specific flow resistance r. This can be measured with a
steady state flow driven by a fixed pressure difference
across a sample of the material.

If
rd > pc, (11.2.86)

which 1s easy to fulfill, we may show from Egs. (11.2.78),
(11.2.84) and (11.2.85) that at the lower frequencies
where sinh (j k_d) may be replaced by (J k ,d), the improve-
ment 1s glven b§ the simple relation of Eq% (11.2.74a) for
all angles of 1incldence.

_ A

At high frequencles, we may replace sinh (J k_d) by
(1/2) egxd, which means neglecting some fluctuatiofis about
this value. Then we get for the lmprovement in TL

A [TL] = 20 log '(ze/eé\x) +8.7g4d . (11.2.87)
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In the 1imit of sufficlently high frequencies, we get
for o =1 and X =1 from Egs. (11.2.79), (11.2.84)

A [TL] = 20 log (Z2 cos %/2Pc) + 4.3 (rd/Fc).
(11.2.88)
The first term of the above equatlon corresponds to
the transmisslion loss which would be expected 1f only
the second partition were present. If this partition
behaves like an lnert mass, we find that
A [TL] = 20 log (mm2 cos b"/2'0c) + 4.3 (rd/[oc)

(11.2.88a)

The presence of damping materlal 1n the space between

the walls causes an addltion to the transmission losses
over those of the single walls. PFurthermore, the second
term takes into account that even 1n the short distance
between both walls, the propagating sound wave 1s damped.
From this point of view, 1t seems advantageous to make

use of materials with high flow resistance. But there
may be restrictions because materlials with high flow
resistance will introduce higher stiffness at low frequen-
cles and so increase the resonance frequency f,,.

A general experimental evaluation of Eqs. (11.2.83),
(11.2.8%) and (11.2.85) has not been made as yet, not
only because the corresponding calculations would be very
cumbersome, but also because the results probably would
give much higher values of TL than are actually achieved
in practice. The reason for this disagreement between
theory and practice 1s that the sound not only passes
through the alr space from the first wall to the second
wall but also through the rigid bridges found at either
the edges or at common studs of the wall. The present
aim of research 1n this fleld is to decrease those
influences either by using special types of bridges for
which calculations can be made (see Sec. 11.3) or by us-
ing flexible panels whose critical frequencies are as

high as possible 2.8/.
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11.3 Insulation of Impact Sound

Excitation of Impact Sound. In the discussion of
the insulation of alrborne sound in the previous section,
we had to deal with structure-borne sound problems be-
cause every alrborne sound will be transformed into
structure-borne sound i1f 1t implnges on a structural ele-
ment. But structure-borne sound may also be excited
directly. This 1s the case, for example, 1f any vibrating
apparatus is mounted on a wall. Also, a very common type
of direct excitation of structure-borne sound 1s the impact
of rigid bodles against a rod or a plate.

The chilef difference between the excitation by air
sound pressures and by forces transferred by rigld bodies
is a difference in the extent of the area over which the
driving force is applied. In the last case, we may regard
thlis area as being concentrated at a point. Therefore,
we are Interested in knowing the reaction of the drlven
continuum to a "point source". In other words we are
Interested 1n the mechanical point impedance, 1i.e., the
ratio of an alternating driving force to the resultant
alternating velocity.

For a rod iInfinilte in one direction and set in
longitudinal vibrations at the free end’this mechanical
impedance 1s

Z;, = AVPE =mecp . (11.3.1)

Here A 1s the area of the cross section, p the density,

E Young's modulus of the material, m the mass per unit
length and cj, the velocity of longitudinal waves 1in the
medium composing the bar. In this case, the input imped-
ance, which also 1s equal to the characteristic impedance
of a progressive longitudinal wave in the rod, is real
and, therefore, independent of frequency.

But 1f the force is acting transversely at the free

end of the infinite rod, the impedance becomes complex,
it being given by

Zg, =5~\/ m3B Vio/2 = (1 + J) ch/E (11.3.2)
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where B 13 the stiffness against bending and cg the
phase veloclty of bending waves; see Egs. (11.2.37
and (11.2.38). The input impedance is complex
because in addition to a progressive bending wave a
quasi-stationary motion which dies away exponentially
with increasing distance from the source 1s excited.
The general differential equation for bending waves in
a rod

M
d'v 2
Boy =m0V (11.3.3)

is of the fourth order. This equation allows wave:
motions,

+
vV =exp (-1 kyx) (11.3.4a)
as well as motion of the quasi-stationary type,
v =exp (¥ kx)
- kg (11.3.4b)
where
gy = or _ 4 i
Ms B (11.3.5)

(See Eq. (11.2.36)). Usually both types of motions are
needed to fulfill the boundary conditions for the force F,
moment of bending M, transverse veloclty v and angular ve-
locity w. A further consequence of the complex character
of this impedance 1s its dependence on frequency, which
is included in the dependence of the phase velocity of
bending waves on frequency.

If the transverse force 1s acting at any point on
a rod that is infinite in both directions, the impedance

has the same character but four times the magnitude. 1In
this case

2y = 21 + J)m cg - (11.3.6)
The most important point impedance is that of an

infinite plate driven by a transverse force. Since here
also bendling vibrations are excited, a complex impedance
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as in Egs. (11.3.5) and (11.3.6) would be expected.

In addition, the problem is more complicated due to its
two dimensional character. Fortunately both complica-

tions compensate for each other in thecase of the point
impedance. In thils case it i1s real and independent of

frequency and 1s given by

z = 8/mB (11.3.7)

where m 1s the surface mass density 1in, say, gm/bmg. For
a homogeneous plate of thickness h, this formula may be

written

Z = 2.3 cpp h° . (11.3.7a)

Flg. 11.3.1 glves the values of Zp as a function of
the thickness for homogeneous plates of steel, aluminum,
concrete, asphalt and plywood. For the last three kinds
of material, the values are mean values. The straight
lines are drawn between the limits of thicknesses which
are of practical interest. It may be remarked that the
va%ues for Z vary over the very large range from 102 to
10

kg/sec.

For large, thin, damped plates, the values glven by
Eq. (11.3.7) are in fairly good agreement with measurements
3.1, 3.2, 3.3/. For thicker "plates" such as walls and
ceilings, important devlations must be expected 3.2, 3.3/.
For this reason the line for concrete walls in Fig. 11.3.1
1s dotted and shows only the order of magnitude. For
comparison with measurements, the assumptions of the
Egs. (11.3.7) and (11.3.7a) must be considered. First,
the plate 1s assumed to be infinite or at least large com-
pared to the bending wave length. Thils fixes the limit
of validity for low frequencies where the eigenfrequencies
are well separated. Here we have to expect large devia-
tions because of resonance phenomena. On the other hand,
the simple theory of bending only holds as long as the
bending wave length i1s at least silx times greater than
the thickness. Thils fixes the limlt of validity for high
frequencies. These limits have been given in Fig. 11.2.5.
For the present problem this limit may be lowered further
because of the point-concentration of the force. For
thicker plates, one must always take 1nto account the local
elasticity which diminishes the motion of the plate from
that of the driving poilnt.
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FIGURE 11.3.1

Point impedance of an infinite plate driven at one point,
in kg/sec, as a function of the plate thickness h in 1in.
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Finally, for all frequencles 1t is important that
the plate be homogeneous. However, in many practical
cases thils assumption 1is not valld. For example, some-
times a plaster sheet 1s not in good contact with the wall
to which it 1s attached. 1In such cases, especlally if the
construction 1s obviously inhomogeneous, 1t may be neces-
sary to measure the impedance. Often 1t wlll be sufficient
to know the absolute value of the impedance. This can be
measured by exclting the plate with an electrodynamic
sound source, with the moving coil fixed directly to the
wall or celling. The magnet system should be connected
to the wall only by means of a resilient element. Then
the same force (glven by the magnetic field and the electric
current) acts on the mass reactance of the coil in series
with the plate impedance and on the mass reactance of the
magnet system. If now the same plck-up 1s used to measure
first the veloclty v; (or acceleration) of the plate and
then that of the magnet system v, we get

ve/vl = (J am  + Z)/jam (11.3.8)

where M 1s the mass of the magnet system and my the mass
of the moving coil.

From thils we find for the absolute value of Z

VA <un‘ v2/vl l , (11.3.8a)

!

or if 2 >>mmo,

2y 2,1/2

[ (am)® - (am,)

N
i

v2/v1

(11.3.8Db)

assuming that Z is real. 1In other cases, the phase angle
between vj and vo must also be measured. One must be
sure that the magnet system behaves as a rigid body 3.3/.
If it does not, the force must be obtalned from the
current in the coil and the absolute value of the velo-
¢lty must be measured 3.2/.
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The Spectrum of Impact Sound. The knowledge of the
mechanical impedance has several advantages. For example,
we may estimate whether or not a load will change the
vibration of the body under test. We can calculate the
veloclty which may be obtalined using a sound source of
known force and known 1internal 1mpedance. Also, the case
of impact sound may be treated using the mechanical point -
impedance.

When a rigid body of the mass mgy strikes a rod or
plate with the velocity uy,we get the same result as if
a force impulse (mguy) works on the mass reactance Jum
and the impedance of the rod or plate Z in series, pro-
vided that the latter 1ncreases less rapldly with fre-
quency than amg. In this case, the mass reactance Jumg
may be regarded as the internal impedance of the source.
Since the frequency components of the force impulse are
all equal, namely mgyup/m, we find for the corresponding
components of the velocity of the plate

U, mouo/ﬁr(meo +2) ; (11.3.9)

if Z >n>wmo

U, g:mouo/wz (11.3.9a) .

For thin, large and falirly well-damped plates, we
may take for Z the values given by Eq. (11.3.7) or
Fig. 11.3.1. In these cases, the mass reactance 1s greater
than the wall impedance in the audio frequency region.
The heavier the mass my and, therefore, the lower the "cut-
off" frequency gilven by the increasing mass reactance in
series with Z, the hollower the impact sounds. Also,
this 1s in agreement with our experience that an impact

sounds hollower, the thinner, lighter and more flexible
the plate is.

For thick walls, Eq. (11.3.9) is no longer valld
because of the local elasticity around the point of impact.
However, if we take into account a resilience K which for
simplicity 1s assumed to be linearly dependent on ampli-
tude between the striking mass and the impedance of the
wall calculated according to Eq. (11.3.7), the velocity
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in which we are Interested is . no longer the veloclty u
of the mass mg, but the veloclty of the plate v outside
the local resilient reglon. As may be derived easlly
from the schematic given in Fig. 11.3.2, the spectrum
for this velocity 1is given by

m_u
v = 0 o .

® [jomo +2 (Ir- w?ﬁo/k) ]

T o Mollo
lu: — e i
T\ 72222

Mechanical schematic diagram for the impact of
a mass mp with velocity u, on an infinite plate
with local resilience represented by the spring K.
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In Fig. 11.3.3 the spectrum of vy 1s plotted for fixed
values of my and Z and different values of K. Since
energy losses are neglected,the lack of high frequency com-
ponents results in an emphasis of the lower frequency
components.

For comparison wlth measurements, it should be noted
that Eq. (11.3.10) assumes constant bandwidth. When using
octave band filters or third-octave filters, the measured
results must be reduced to equal bandwidth, i.e., the
measured amplitudes must be multiplied by w-1/2 |

In the routine technique of impact sound measurements
in buildings, instead of v the mean sound pressure in the
recelving room is measured. In this case the radiation
power of the wall or celling, which depends on the ratio
of the frequency to the critical frequency (see Eq. 11.2.47)

and the absorption power of the receiving room, enter into
the results.

Improvement With a Resillient Layer. 1In the last
section we have Introduced an unavoidable resilience K
between the striking mass m and the plate characterized
by Z. However, as we know from common experlience with
thick rugs, such an elastic layer 1s simple and effective
as a remedy for lmpact noise.

The improvement of such a covering may be expressed
by the difference of the sound pressure levels in the
receliving room measured with and without the covering.
Since the absorption power and the radlating power of the
celling is not altered, the "improvement" may also be
expressed by the ratio of the corresponding velocitles
of the celling or wall at the place of lmpact

AL = 20 log (vl/ve) . (11.3.11)

For not too high frequencies, we can use Eq. (11.3.9a) that

u=v, = mouo/%z
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FIGURE 11.3.3

when a mass m, strikes a plate whose point impedance

|
|
|
|
The spectrum shape of the impact-induced vibration
is 2.
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and for not too low frequencles we get for the covered
ceiling from Eq. (11.3.10)

mouo K
T 2 2
mow

Vo

so that we find

AL = 40 log (w/w') = 40 log (f£/f!) (11.3.12)

1 l K
£ = 5= \K m (11.3.13)

is the eigenfrequency of the system consisting of the

striking mass m, and the stiffness K of the elastlc layer.

This stiffness 1s not only glven by the properties of the

layer, but also depends on the compressed area, or in other

words, the form of the striking body. Furthermore, in

most cases the area changes during the 1mpact. Therefore,

the linear resilience which has been assumed can be .

regarded only as a simple model. From this model we see

that the improvement depends not only on the kind of -
covering but also on the striking body, especlally on

its mass my. As may be seen from Egs. (11.3.12) and

(11.3.13), the improvement increases with . .

where

The standardized European test technique for impact
sound control uses a falling mass of 500 gm (1.15 1b).
Compared to a person walking, thls mass seems to be too
small to represent step noise 3.4/. However, step noise
i1s not the only kind of impact nolse. In the case of
light swltches, for example, the strlking masses are much
smaller, but the nolse 1s still annoying.

It may be noticed that the improvement 1s independent
of the impedance of the ceiling provided that it is suf-
ficiently large and provided the local elasticity may be
neglected. This 1s in agreement with measurements 3.5/.
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Improvement by a Floating Floor. Ideal Conditions.
It 1s not always possible to cover a ceiling with only
a resilient layer. 1In addition, a durable finish is
needed. Covering the resilient layer with a rigid plate
not only protects the layer, but 1t also has an acoustilc
advantage. We speak of a "floating floor" if the layer
is highly resilient and the plate 1s stiff enough to
bear the load of furniture and persons without too great
a deformation.

In this case the improvement may be calculated.
The formula 1s similar to Eq. (11.3.12) 3.6/

AL =40 log (£/f)) . - (11.3.14)

But now the reference frequency 1s the eigenfrequency of
the system consisting of the surface mass unlt area of
the floating floor m] and the stiffness Kj per unlt area
of the elastic layer. Thus,

K

_ 1 1
£.= &= y . (11.3.15)

Here the quantity K; is well-defined. It consists of
two parts, Kj' and Ki" where

K, =K' +K" . (11.3.16)

1 1 1
Ki' 1s the stiffness of the fibers of the layer which
holds the floor at the distance d from the celiling

K,' = E;/d (11.3.17)

and K." is the stiffness of the alr enclosed between the
float}ng floor and the celling

K," = Foce/o‘d. (11.3.18)
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Here o 18 the porosity of the fiber blanket and may be

assumed to be nearly one. The elastic modulus Ej may be

evaluated by measuring the elgenfrequency of a given mass

on a small portion of the blanket 3.7/. In this case the

resilience of the air may be neglected since the air can :
escape laterally. But for an area of floating floor

which 1s large compared to the wavelength of the sound

frequencies, the alr under the floor must be compressed. -
Generally it 1s of no acoustic advantage to make the

blanket more resilient than the air but it would be a

disadvantage from the structural viewpoint.

If we assume K7 = K1' = pge /d f1 becomes equal to
f,, defined by Eq. (11.2. 71a), .

£, =170/,/6,d (11.3.19)

where (7 1s the surface weight density of the floating
floor in 1b/sq ft and d 1s the distance between the float-
ing floor and the celling. This distance has to be mea-
sured for the finished floor. It may be measured with a
part of the blanket loaded by about 40 1b/sq ft, corres-
ponding to the welght of floor and furniture.

It may be remarked that the improvement of the float-
ing floor with respect to impact sound 1s the same as the
improvement with respect to airborne sound which was given
by Eq. (11.2.74). But it may be mentioned that the deri- -
vations of both formulae and the physical basis are quite
different. In one respect, however, we may make further
use of thils analogy. For the alrborne sound problems, .
we mentioned that for a wave at oblique incidence, lateral
motion in the air space 1s excited and results in a
higher stiffness. However, with a fiberglas blanket in
the alr space, this motion is hindered and the stiffness
for waves of perpendicular incidence 1s obtained for all
angles of 1ncidence. From this analogy, we can see that
in the case of impact sound also, the flow resistance of
the blanket 1s effective 1n preventing lateral motion of
the alr. Hence an air space without a blanket has a
higher stiffness, thus gives a smoother improvement.

From Eq. (11.3.14), it is seen that the improvement
of a floating floor 1s independent of the type of ceiling.
This 1s also 1n agreement with measurements taken
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Furthermore, the improvement 1s independent of the strik-
ing mass. However, this statement holds only as far as
the point impedance of the floating floor Z; may be con-
sldered as being large compared to the reactance of the
falling mass (wmg). For thin rigid coverings and high
frequencies, we have to add to Eq. (11.3.14% a second term
to obtain for the improvement of the floating floor

DL = 40 log (£/f;) + 10 log [1 + (2rfm_/2,)%] .
(11.3.20)

As in the case of the improvement of alrborne sound
insulation by a separated, second partition wall, Eqs.(11.3.14)
and (11.3.20) are valid only if they give values which are
not too high. However, the equations are useful for design
because the frequency reglon where they are valid is the most
Important region.

There are several reasons for the deviation of
experimental results from Eq. (11.3.14). First, this for-
mula is derived on the assumption of an infinite ceiling
and a floating floor. Since the floating floor 1is care-
fully separated from the side walls, there is total reflec-
tion of bending waves at the sides. These reflecting waves
will also contribute to the mean sound pressure in the
recelving room. Furthermore, it seems that the tangential
motion in the elastlic layer cannot be prevented at higher
frequencies. But the most usual and dangerous deviation
happens 1f there are rigid connections between the float-
ing floor and the ceiling, which may be called "sound-
bridges."

Improvement by a Floating Floor. With Sound-Bridges.
We now will consider the Improvement of 1solation by a
floatin§ floor and how it can be decreased i1f point "sound
bridges” are present 3.8/. Such more or less rigid bridges
may not only occur as an error during the construction of
a floating floor, they may also be a result of the con-
struction, as for example when the floor 1is laid on
rubber mountings. In all these cases there are two ways
for the sound energy to pass from floor to ceiling. The
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first 1s that over the alr space 1nslide the fiberglas

blanket which 1s considered in Eq. (11.3.20). The second

1s the path through the bridges. At high frequencies, the

internal impedance of the source (meo) has to be con- -
sldered for both ways. Therefore, the second term of

Eq. (11.3.20) remains unchanged.

Generally the expression for the improvement (actually
a deterioration by the bridges) may be written as

-
n 2
4 W(kl ri) 25
AL = -10 1og |(f,/F) +§:
(£1/ 7o ¥ Aip 2y
1m1
| ﬂ
+10 log [1 + (27 fm /2)%] .
(11.3.21)

Here ry 1s the distance between the place of lmpact and

the 1ith of the n bridges and k; 1s the propagation para-

meter for a bending wave in the floating floor, which in

general 1s a complex quantity given by -

k, =2 (1 - 1n/4)/M (11.3.22)

Here A1 1s the length of the bending wave and n loss factor
which has been introduced in Eq. (11.2.59) but which also
may be defined by the measured attenuation per wave length.

The function I1(kjr) gives the ratio of the trans-
verse velocity of the floor at a distance r which would

be present without the bridge to the velocity of the floor
at the point of impact,

T (k) = v(r)v(0) . (11.3.23)
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Therefore, in all cases we have
M) =1 . (11.3.23a)

For an infinite floating floor without damping, [| would
increase as kir increases

~H—(klr) = V2o/r k,r exp - J(klr - 7/4)

or

|_Tr‘2 =2/m kKyr . | (11.3.23b)

But the assumption of an infinite size 1s not as
valid 1n the case of the floating floor as it 1s in the case
of the celling. The floating floor 1s carefully separated
from the wall so that the reflection of bending waves is
total. The energy losses only occur during the propagation.
If these losses are high, as in asphalt floors, we may
neglect the reflectlons and set

TN = (2 k,r) exp (-Nkr/2) . (11.3.23c)

If the loss factor 1s small, however, many reflectlions
must be taken into account. The resultant velocity will
be glven by a statistical superposition of all the re-
flected waves. In this case |T[|2 becomes

2
“Trl =4 ¢y hy/So M V3 (11.3.234)

where S 1s the surface area of the floating floor, c¢ 1s
the velocity of propagation for longitudinal waves a%% hy
the thickness of the floor.

The velocity at the distance ry, given by 11v(0), has

to be distinguished from the velocity v which occurs if
a bridge 1s present, according to the formula

vy = [[v(0) - Fy/z, . (11.3.24)
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FIGURE 11.3.4

Sketch of a floating floor separated by a
fiberglas blanket and a sound bridge from
the celling below. The various quantities
ugsed in the analysis are shown in the figure.

Here Z 1s the point impedance of the floating floor, Zp
that of the celling and F, 1s the transverse force acting
between the floor and the bridge. See Fig. 11.3.4.

The quantity in which we are interested is the
veloclity vp at the foot of the bridge. This is related
to vy and F; by

2y, = Fy /v, (11.3.25)

Ay =vy/v, - (11.3.26)
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The first of these coefficients has the dimension of
an impedance and 1s,therefore, characterized by the
letter Z. Since the second 1s a pure number, a Greek
letter has been chosen. The double subscripts 12 indi-
cate the coupling between quantities before and after
the bridge.

For a short, prismatic bridge of the length 4,
cross sectional area A, density p and Young's modulus E
we find

Zip =2, +J 0RAp (11.3.25a)

12

Np=1+J3lz/AE . (11.3.26a)

Then the denominator of the second term of Eq. (11.3.2)
becomes

(11.3.27)

The detalls of the bridge appear only in this second term,
which increases with frequency. We wish to make this
term as large as possible. This means that we have to
avoid the minimum value for the term in the brackets that
occurs when the characteristic impedance of the bridge
equals the geometric mean of the point impedances of
floor and celling. That is, when

A J/Ep = ,/zl z, . (11.3.28)

This case 1s of importance for double wall con-
structions consisting of equal panels, where Eq. (11.3.28)
becomes

212,
Zip + N2 = (z1 + z2) +J wl(ap + —-m-)

AV/Ep = Ap er, = Zy . (11.3.28a)

There 1t 18 easy to see that the sound energy from one
wall will be transmitted to the other most easily if the
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characteristic impedance of the bridge Ap cy matches the
point impedances of the plates Z;. Avolding this match-
ing does not necessarily mean that the bridge should be
as resilient as possible. If the bridge connects two
thin wooden panels of the thickness h, a wooden bridge of
cross sectlonal area A glven by

A = 2.3 1% (11.3.28b) .

would Just give the perfect impedance match, as may be
derived by comparison of Egs. (11.3.28a) and (11.3.7). It
is better to mismatch Zy and Zo as far as possible. So
for example, Meyer founé experimentally that with wooden
panels, heavy iron bridges gave the best sound insulation

L3 -

In the case of floating floors, Z, 1s so large that
mismatching occurs only with very resilient bridges. This
means that we may neglect pA in Eq. (11.3.27) and thus
have the quantity AE as small as possible. In this case,
Eq. (11.3.21) becomes

AL = - 10 log[ (fl/f)b' + Z:

+10 log [1 +fr £ /2.)%] . (11.3.29)

The more resilient the bridge becomes, the more the length
becomes comparable to the wave length of longitudinal waves
in the bridge and the formulas, Egs. (11.3.25a) and
(11.3.26a), have to be replaced by the corresponding trans-
mission line equations.

1Tz |2-}

(2,4Z,) + Jo 2,2,/AE |

Also we are interested in bridge constructions
which at present cannot be calculated at all. In these
cases we have to measure Z;, and Aj,. Usually Z,, can
be neglected compared to Ay5 Zy, so fhat 1t is sufficlent
to measure Alg. This can ge éone easlly by comparing
vy and vo with the same device and with any kind of
exciting force. But it should be remarked that N, 1s
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defined in connection with a special celling 22 only.
In this case Eq. (11.3.21) may be written

T2y Mo 2 ,2]

+10 log [1 + (27 tm /2,)%] . (11.3.30)

DL = -10 log [(fl/f)4 + )

Impact sound, as well as structure-borne sound in
general, not only excites one wall, but propagates through
the structure. Such vibratlions are propagated wlth relative
ease and are not usually hindered by bends or changes in
cross sectional area of the structural member; but they
may be interrupted by vibration breaks consisting of
elastic layers. For a discussion of these matters, see the
work of Cremer 3.10, 3.11/.
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11.5 Transmission of Sound Through Cylindrical Pipes

The discussion of Sec. 11.2 of the transmission of
sound through walls is valld for curved plates if the ra-
dius of curvature 1s large compared with the sound wave-
lengths in both the air and the plate. But we have to
add a third term to the transmission impedance (see the
discusslon on single walls in Sec. 11.2 for a concept of
transmission impedance) if the radius of curvature becomes
comparable with either of these wavelengths. This added
term is larger than the first two when the radius of curva-
ture is small compared with the wavelength, as 1s the case
in cylindrical pipes with small diameters at low frequencles.
Here the sound pressure inside the pipe is uniform over the
cross-section. The constant pressure inside tends to en-
large the diameter and gives rise to elastic restoring
forces on account of this tension. Then the transmission
impedance is a resilient reactance equal to

1 Eh
Zv =35 2 . (11.5.1)

a

Here a 1s the radius of the plpe and h the thickness of
its wall, E 1s Young's modulus and o = 27 x frequency;
we always assume that h << a.

In the 1deal case that the pressure inside the pipe
is constant along the pipe, Young's modulus would have to
be divided by (1-p2) as in Eq. (11.2.38a). In this case,
axlal contraction 1s hindered. But in practice axlal
contractlion is always possible; if the pipe is short, the
edges can move; or if the pipe is longer than the wave-
length of sound in air, the radial expansions and contrac-
tions of the diameter involve the necessary axial motion.
In practical cases, the difference between E and E/l-u
18 too small to be considered in practical calculations.

It is easy to show that the tension term given by
Eq. (11.5.1) is much greater than the inertia term. The
sum of both may be written

| 2
Zy = %—‘BE% + Jom = %—; [1 -(Z“’D-;-) J : (11.5.2)
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Here
w, = c/a or f_ = c /2ra . (11.5.3)

This 1s the angular frequency w, or the frequency of the
zero order mode of a ring of diameter 2a. The correspond-
ing motlon of the pipe 1s mostly radial with only small
axial motion. Since this frequency 1s a characteristic
quantity for the behavior of the pipe, we may relate all
frequencles to 1t py introducing the dimensionless fre-
quency parameter given by

Voo (11.5.4)

For small vV, the tension term 1s 1/7 > times greater
than the mass term, thls means that we expect the "trans-
mission loss" to be 40 log 1/ higher than that given by
the mass law for normal incidence.

For a steel pipe of 4 in. diameter, the zero mode
frequency would be about 16,000 cps. Assuming a thickness
of about 1/8 in., the "mass law for normal incidence" would

ive at 1000 cps, TL = 46 db; but to this has to be added

8 db (40 log 1/2), so that the theoretical value of the
TL would be 96 db. PFurthermore, we have to realize that
according to Eq. (11.2.9a) the radiating surface of such

a plpe 1s always small compared with the absorption power
of the receiving room. Iet us assume that the pipe has a
length of 8 ft; i1ts surface will be about 8 sq ft whereas
the absorption power of even a small room may be 80 sq ft.
According to the discussion in Sec. 11.2, this means that
10 db has to be added 1n order to get the pressure level
difference*. Finally, we must remember that the radlation
power of a pipe 1is not proportional to its surface area 1if
the perimeter becomes smaller than a wavelength. Taking
everything lnto account, the calculated pressure level
differences are so high that at 1000 cps, a sound pressure
of 100 db inside the pipe would not be heard outslide and
at lower frequencles even much higher pressures inside

* Although Eq. (11.2.9a) was derived under the
assumption of a large source room with statisti-
cally distributed sound waves 1t can be proved
that 1t 1s also valid for a source room small
compared to the wavelength.
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would not be audible outside. The amount by which the TL
of small pipes exceeds the mass law has not been studied
experimentally. But there is no doubt that practical
observations do not correspond to these sample calculations.
One of the reasons may be that the pipe 1s always fixed

to a wall with the possibility of transferring sound energy
to the walls which may then radiate it. Also, even 1f the
dlameter 1s small compared to the wavelength, small asym-
metries willl excite other modes with higher amplitudes.

If we now treat the case of a large cylindrical shell, we
will see that these other modes may offer much smaller
transmission I1mpedances.

When the dlameter 2a 1s large, the zero-mode frequency
willl be in the middle audio range. For instance, for an
aluminum shell 7 ft in diameter, corresponding to an ailr-
plane structure, this frequency would be 770 cps. At this
frequency, the perimeter equals the length of longitudinal
waves in the shell. Since the corresponding velocity of
propagation cy, 1s about 15 times greater than the sound
veloclty in a&r Cos We have 15 wavelengths of airborne
sound along the perimeter and we may say that in this re-
gion the radius a 1s large in comparison to the wavelength.
Then the behavior of the shell will be similar to that of
a plane wall. Therefore, we have to add a term repre-
senting stiffness against bending as in Eq. (11.2.48);
this would change Eq. (11.5.2) to

1l

Z1T = Jam - J(Eh/wa®) - J(Bw3/c04) sint o*

I

jertm [1 - (£/0)% - (£/t,)? sin'% ] .
(11.5.5)
Thus, the critical frequency o> defined by Eq. (11.2.47)

appears as a second characteriStic frequency for the shell;
in terms of

V. = £/t = V12 (coga/cL2h) (11.5.6)

c
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FIGURE 11.5.1

Coordinate system used 1n the analysls of the
transmission of sound through a cylindrical
shell.

appears as a new parameter. For the example of a 7 ft
aluminum shell, we get ¥, = 2 1f h 1s 0.2 in. and V ,=0.5
for h = 0.8 in. The angie V- 1is the angle between the
perpendicular to the shell, 1.e., the radial direction,

and the direction of the incident wave as shown 1n

Flg. 11.5.1. But now we have to conslder another angle, P,
which determines whether the propagation for ?* = 900 in-
volves an axial or a longitudinal motion. For the first
case, F is 90° while 1n the second, P = 00,

It 1s simple to demonstrate that the second term

in Eq. (11.5.5) must depend on this angle. If we curve a pilece
of paper into a cylindrical shape, we see that 1t 1is very
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easy to bend the cylinder in a directilon corresponding

to B = 00, but that it 1s very difficult to bend it in
any plane containing the line B = 90°. Omitting only a
small region of nearly perpendicular incildence gilven by
sin2 ¥ < 8(1 +-p)(co/b152, we can include this dependeﬂce
by multiplying the tension term of Eq. (11.5.5) by sin
to give

3
Zr = Jum - 3-@92 sin”,e - 359-5 sin®
wa Co

4 :
j emfm [1 - i}g £ _ (V/ié)e sinui*].

(11.5.7)

Agaln we are especially Iinterested in the conditions of
vanishing impedance. We may plot the corresponding (19,1))
lines (contours of equal TL) with £ as parameter on a

(log Y, sin2 ¥ ) plane as was done in Fig. 11.2.9. The
results are gilven in Fig& 11.5.2 and 11.5.3 for VY, =2
and ‘Jc = 1/2 respectively. For sin2§ sin2 17‘<<‘)C/2

and, therefore, for c >2> 2, two different types of
trace matching appear. (In Fig. 11.5.2 thils 1s the case
except for the curve f = 900 in the regilon sin2 V" >0.8).
One is the trace matching for bending waves already dis-
cussed in the case of plane walls. This is independent of
B and is given by Eq. (11.2.46) with new parameters given
by

Vo= Y/ sm? (11.5.8)
This situation occurs only above 1j= Ié or f = fc.
The second type 1s a trace matching for tensional

waves. Here the two first terms of Eq. (11.5.7) are equal.
This is independent of ¥ but dependent on f3 by the relation

V =sin®p . (11.5.9)

This occurs only belowv =1 or f = fo.
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For a given direction of the incident sound,we may say

that the sound insulatlon of the shell is stiffness-controlled
below V = sin2f3, that it 1s mass-controlled in the region
sin2 B < V < V,/s1n” ¥ and that it is agaln stiffness-con-
trolled above i/./sinZ .

If'ﬂc < 2, as may be the case for thicker shells, the
two kinds of trace matching cannot be separated further and
the lines for Z - = 0 continually pass over from the one
limiting case to the other (see Fig. 11.5.3 except B =_15°).
Here for specilal values of (and g given by sin? bgsin2p?7}é/2,
the wall is always stiffness-controlled; at low frequenciles
it 1s controlled by the stiffness for tension and at high
frequencies by the stiffness for bending.

For a glven direction of the incident sound we may also
calculate the transmission coefficient T by putting
Eq. (11.5.7) into Eq. (11.2.20). Here Eq. (11.2.20) has to
be consldered as an approximation because it was derived
for plane waves whereas here we have cyllindrical waves 1n
the radial direction. But the difference 1s important
only at low frequencies. Also, here the region of grazing
incidence must be excluded. But for all other cases we may
write

- L £ 2 N L o i 2
[TL]-.J. = 10 log 1+ M - -9 s n ﬁ _ f"sin O
¥ 2

—

foco f2

(11.5.10)

There 1s seldom a preference for special angles of
incidence. In practice we have mostly a distribution of
sound over various angles of inclidence. Then the result
for a given frequency region essentially depends on whether
or not an angle for trace matching appears. If 1t does,
most c¢f the transmitted sound energy is due to this special
direction. Furthermore, the result will depend on the damp-
ing of the shell and also on the size of the shell. In the
case of a plane plate, all thils happens above f, only. Here,
for a curved shell, 1t also happens at frequencies below fg
with the result that the TL will be much lower than the
mass law would predlict. The proper value will depend on
the maximum transmission coefficlent and on the bandwidth
as in Eq. (11.2.64).
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FIGURE 11.5.2

Contours of equal TL for various values of the
frequency parameter ¥ = f/f_, sin2# and 9 , =
f<‘/fl = 2.
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When averaging over the various angles of incldence,
we have again to take into account the fact that a portion
of the wall S will intersect only the area S cos L of the
wave front, whereas with respect to P no such weighting
factor appears. Also with respect to the probability of
a special direction, all § will have the same probability.
Therefore, no speclal welghting factor is required but if
it can be assumed that the sound inslde will be distributed
over all directions equally the region between A and o >
has to be multiplied by sin v* . But in the case of a
cylindrical enclosure, two further aspects render the pro-
blem more difficult. First, not all combinations of and

appear 1lnside a glven cylinder. It 1s easy to under-
stand that in the tangential direction around the perimeter,
the periodiclty must be a proper fractlion of the perimeter.
A second, not so simple condition, holds in the radial
direction. From both 1t can be derived that in the above-
mentioned case of a cylindrical shell of 7 ft dlameter,
at 500 cps there exist only 17 different palrs of angles
Y and £ . Furthermore, these angles are not equally
distributed over all the possible directions. This 1is a
consequence of the well-known fact that each curved wall
results in focusing of the sound. If the sound source is
located in the center we will get perpendicular Iincidence
for g =0, 1.e., ¥ = 00 only. If the source 1s located
near the perimeter, the incidence will be grazing. It can
be seen geometrically and may be proved more rigorously
by the wave theory that a really tangential sound propaga-
tion, i.e., ¥ = 90° for B = 0° 1s possible only in the
limit of infiniltely high frequencles. On the other hand,
the focusing qualities of a cylinder willl be destroyed if
there are deviations from the ideal geometric form and
especlally if there are any kind of obstacles inside.
Therefore, 1t 1s hazardous to base extensive calculations
on the angular distribution of sound in a perfect cylinder.
To the same degree of approximation, we may assume a
uniform distribution of angles of incidence as 1in the case
of a plane wall.

If we assume a statistically uniform distribution of
angles of 1ncldence, the average 1s glven by

/2
Trandom = / / Td (stn®H)dp . (11.5.11)
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For 7)c >2, 1.e., for thin walls and a pipe of large
diameter, above the critical frequency T becomes in-
dependent of and the results are the same as 1n the case
of the plane wall. Therefore, we may use the Egs. (11.2.58)
and (11.2.65) in this region or Figs. 11.2.10 and 11.2.11.

In the mid-region 1 < v/ <.1é we can expect the
mass law to hold 1f the frequency region is sufficiently broad.

For 1/-< 1 we may calculate the mean transmission
coefficient with respect to B in the same way as we did
for the case of bending wave trace matching. In regard to

2*; 1t may be reasonable to choose the mean value of
= U450, Then we get for 7/ < 0.8

a
[TL]45 random 10 log Cﬂg) + 5 log (Z’“‘ﬁg) + 1.5
’ c

(11.5.12)

where ag 18 the value given by Eq. (11.2.51). Therefore,
the first term which corresponds to the 00 mass law at the
zero mode frequency represents one half the transmission
logs. Thus we see that the transmlssion loss will be, in
general, smaller than would be calculated using the mass
law. Furthermore, we see that the frequency response 1is
rather flat. In Fig. 11.5.4, [TL]45, random 18 Plotted
agalnst frequency for the reglon
0.05 417V <0.8 for different values of a,//,. As in

Fig. 11.2.10, the practical value of these curves 1s doubt-
ful since even a small amount of damping will change the
results. 7

/

Introducling energy losses by means of a loss factor
as defined in Eq. (11.2.59), we have to -add to Eq. (11.5.§O
a further term '

[TL]45, pandom = 10 log (a./4/,) + 5 log (T)—ZJE) + 1.5

+ 10 log (1 + 0.71NMa, ¥/ V/,)

(11.5.13)
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Contours of equal TL for varlious values of the

frequency parameter vV = f/f _, sin?? and 7
fc/fo = 1/2,
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PIGURE 11.5.4

The TL through a cylindrical shell for a random distribution of
angles of incidence g and ¥ = 45° as a function of the frequency
parameter V = f/f,. Several curves are plotted for variaus

values of the parameter &,/ 3 o
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The TL through a cylindrical shell for a random distribution of angles of incidence
and ¥ = 450 for the case of a loss factor ‘] = 0.01. This latter value represents
a common situmtion, even when no damping is specifically introduced. The abscissa

is the frequency parameter v = £/fy and the TL is given for various values of the

parameter o(c/ Ve
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In Fig. 11.5.5, the corresponding values of TL are
plotted as a function of 1 for various values of ac/bk
as in Fig. 11.5.4 and for a loss factor of | = 0.01
(which may be assumed in most practical cases, even if
there 1s no special material used for dampings. For
small a./Vp,thls amount of damping does not essentially
alter the results shown in Fig. 11.5.4. For high values
of acbyig, generally if O0.T1 Y acV/Ve > 4, we may
approximate Eq. (11.5.13) by

a
[TL1y5, pandom = 20 108 (iﬁ) + 5 log (ﬂ3-ﬂ4) + 10 log h
’ c

(11.5.14)

Here we see that doubling the loss factor increases the
TL by 3 db. Therefore, it would be advantageous to in-
crease the loss factor of a shell for both high and low
frequencles.
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12.1 Specification of Sound Absorptive Properties

In connection with certain problems in the control
of airborne sound, and in the specilal problems of sound in
rooms, the acoustical designer has to deal with the pro-
perties of sound absorbing materials. It 1s necessary,
therefore, to describe briefly the physical principles of
absorbing materials, the manner in which the physical
properties and the sound absorbing properties are measured,
and in a general way, some of the applications of the data
which describe the materials.

In this limited discussion, 1t 1s possible to describe
the significance of several of the concepts only in a quali-
tative way. The reader who desires a fuller knowledge of any
of the topilcs touched on in this section should consult more
extenslive discusslons which have been published 1.1, 1.2,

1.3, 1.4/,

The Several '"Coefficilents" for an Acoustical Material.
The energy-absorbling abllity of an acoustical material at a
glven frequency is most commonly specified by an "absorption
coefficient”. The widespread use of such a quantity suggests
that this single measure 1s sufficlent to indicate the per-
formance of the material in all situations. However, this
1s not true. Detailed acoustical theory shows that the
speclfic acoustlic impedance has much wider applicability in
describlng the material. Thilis quantity, in general a
complex number, varies wlith frequency and may vary with the
angle of 1ncidence of the sound. Under special conditions
some real number (a "coefficient") may describe the behavior
of the materlial. Actually there are several different
coefficients, each useful in speclal cilrcumstances as a
measure of energy absorption. Each 1s derivable from the
speciflc acoustic impedance. Since the complex specific
acoustic impedance contains two parts, 1t cannot, in general,
be calculated from any single value of any of the
coefficlients.

Before discussing the energy-absorption coefficients,
it will be helpful to review the behavior of a simple oscil-
lator. A "simple oscillator" may be a mechanlcal system
equivalent to a mass, a spring, and a damping element, an
analogous simple electrical circuit or a confined Volume of
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alr in which one of the natural sinusoldal acoustical vibra-

tions has been excited. In any case, elementary theory shows

that the energy of vibration of the simple oscillator decays
exponentially with time when the system 1s 1n free vibration -
(no external driving force). Thus, if the instantaneous

energy of vibration 1s W, and if the initial energy of vibra-

tion 1s WO, the energy at any time t follows the equation: .

-2kt
2

W=W e (12.1.1)

where k is the damping constant. By differentiation of
this relation, the definition of the damplng constant 1is ob-
tained 1n the form:

_ 1 dw/dt
= -3 & (12.1.2)

Ordinarily a sound source 1n an enclosure excites
more than one mode of acoustlcal vibration. When a sound
source 1s turned off, each mode which has been excited acts
as a simple oscillator at 1ts natural frequency. In general
each mode has a different decay rate, but it 1s found that
in a rectangular enclosure there exist three groups of modes,
within each of which the damping 1s roughly the same for all
modes. The mode groups are designated as axial, tangential, -
and oblique., It wlll be seen later that these designations
refer to the extent to which the wave motion of a particular
mode 1nvolves tangentlal or oblique 1ncidence on the various
walls,

The detalled wave theory shows that the damplng rates
of the various modes can be related to quantitles called
wall coefficients. The wall coefficients depend upon the
size and shape of the enclosure, the distribution of the
absorbing material, and the mode of vibration which 1is ex-
cited, but in certaln cases the special forms of the wall

coefficients can be regarded as intrinsic properties of the
absorbling material.

The normal wall coefficient of a surface, Qp, is
defined as eight times the real part of the admittance ratio
(impedance and admittance are discussed later in this section).
This quantity measures, for a wall which 1is not highly absorb-
ing, the damping of waves which meet the wall at normal or
oblique 1ncidence.
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The grazing wall coeffilcient (X t, 1s a measure of the
amount by which a wall 1n a chamber of regular shape contri-
butes to the damping of an acoustical vibration conslisting
of wave motion "parallel" to that wall. For a relatively
nonabsorbent wall, however, there exlsts in place of the

. grazing coefficient a supplementary wall coefflcient, which
in the case of a rectangular enclosure, depends upon the
properties of the opposite wall. These coefficlients can be

. computed from the acoustic lmpedance. When both walls of a
pair are not highly absorbing, both the grazing coefficient
and the supplementary coefficient are nearly equal to ?5/2.
(See Ref. 1.1 for a discussion of limits of validity o
these several coefficients.)

The wall coefficlents above are related to the damping
of the energy of an acoustical mode of vibration in an en-
closure. Another set of coefficients, which will now be
described, has to do with the fraction of incident power
which 1s absorbed when a free sound wave 1n space strikes an
absorbing surface. There 1s no general relation between
these absorption coefficients and the wall coefficients given
above, but 1t willl be shown that under special conditions
the absorption coefficients are related to the rate at which
the total energy of a group of modes of vibration 1n an
enclosure decays with time. This leads to the very restricted
reverberation theory of elementary acoustics, and to the
ordinary procedure of characterizing an acoustical material
by an absorption coefficient as measured in a '"reverberation

- chamber", ‘

The basic quantity in the absorptlon of a single wave
at a wall 1s the free-wave absorptlion coefficient, GJ(G)
This coefficient is simply the fraction of the power in the
wave, lncident at an angle ©, which is absorbed by the wall.
The notation indicates that the free-wave absorption coeffi-
cilent 1s a function of the angle of incidence, ©. The con-
cept of absorption as a function of angle of incidence (the
angle between the normal to the absorbing surface and a line
perpendicular to the wavefront striking the surface) is valid
in practice for angles as great as 80°, However, the concept
of a free-wave absorption coefficient breaks down for larger
angles of inclidence, because of distortion of the wave by the
absorbing boundary¥*,

*
The case of © = 90° is meaningless in any case, because a wave

cannot travel absolutely parallel to & surface having absorption;
the wave fronts are curved by continuous flow of energy into the
surface. For this reason, quotation marks were used sbove in
statements concerning waves traveling "parallel" to a wall.
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The free-wave absorption coefficlent can be obtained by a
direct measurement of the amplitudes of 1lncldent and re-
flected waves, or by techniques which depend upon the effect
of an absorbing sample at the end of a tube in which "stand-
ing waves" are set up.

The normal free-wave absorption coefficlent, denoted
by cﬁo, is the value of the free-wave absorption coefficient
in the special case of normal incildence (Q - 0°). Therefore,
Kk o 1s the fraction of 1incldent power which 1is absorbed

when a free plane wave 1s normally incident on the absorbing
surface.

Finally, when the power incident on the absorbing
surface is carried by an infinite number of plane waves uni-.
formly distributed through all possible angles. The fraction
of the power which 1s absorbed is defined as the statistical
absorption coefficlent & gtat. For reasons which will be
glven, this coefficient 1s sometimes called the Sabine absorp-
tion coefficient, and at high frequencies this coefficient
1s closely equal to the chamber absorption coefficlent
ordinarily reported by the manufacturers of acoustical absa b-
ing materials. The statistical absorption coefficient 1s
simply a sultably averaged value of the free-wave absorption
" coeffilcient, which may be defined by the equation:

.4
Lotat = 20/' oK(e) cos © sin 0 de. (12.1.3)

Relatlion of the Statistical Coefficlent to Reverberation.
W, C. Sabine, in the earliest systematic work on sound waves
in roomg, suggested on the basls of a serles of experiments
that the total sound energy decays exponentially in the "rever-
beration" which occurs after the sound source is turned off 1.
The damping constant of the exponentlial decay is proportional
to the average "sound absorption coefficient" of the walls.
A mathematical analysis shows that the sound absorption
coefficient which 1s important in reverberation is 1dentical
with the statistical coefficlent defined above, if certain
very speclal conditions are realized. These conditions are,

1. Only a small fraction of the total energy 1s lost
in the time required for sound to travel the greatest dimen-
sion of the enclosure.
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2. The sound energy in the room 1s diffuse, so that
for each wall, all directions of incldence are equally
likely during the reverberatlon process.

3. The energy density 1n the enclosure 1s substan-
tially uniform, so that the transfer of energy to the walls
may be consldered a continuous process of absorption of a
random group of free waves,

If these conditions are realized, it 1s readily shown that
the rate of loss of sound energy 1is proportional to the
average value, for all the wall surfaces of the statistiecal
absorption coefficlent or the Sabine absorption coefficient.
The equatlon for the decay of the total sound energy 1s

‘_CEI St |
W= W, e v (12.1.4)

where S 1s the total wall area, V is the volume of the enclo-
sure, ¢ 1s the speed of sound, and & is the Sabine absorption
coefficlent averaged over all walls according to the relation

8 = (ocls1 + oS, + oc3s3 N ). (12.1.5)
. Here 81, Sp, 83 . . . are areas 1n which the statistical

absorption coefficient has uniform values Koy L3, .
The quantity &3 1is called the total absorpt%on, and 1is in
units of Sabins when its dimemsions are sq ft. That is, one
Sabin equals the absorption of one sq ft of perfectly '
absorbing surface, under the speclal assumptioms of the Sabilne
picture.

By comparison of Eq. (12.1.4) with (12.1.1), the decay
process can be descrlbed by an effective damping constant

K=c®S/MBV. - . (12.1.6)

This 1s not really the damping constant for any single
oscillator; the detalled wave theory shows that this damping
constant 1s only an average of slightly differing values for
all the individual modes of vibration, even when the very
speclal assumptions behind Eq. (12.1.4) are justified.
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The customary way of stating the result of the simple
reverberation theory 1s 1n terms of the reverberation time
T, which 1s defined as the time required for the total
sound energy to decrease to 10-0 (one millionth) of its ori-
ginal value. In unlts of feet and seconds, the reverberatlon
time formula as obtained from Eq. (12.1.4) 1s

T = 0.049 V/ &S, (12.1.7)

A somewhat different form of the reverberation for-
mula, due to C. F. Eyring, has proved to be more satisfactory
than (12.1.4) in cases where O 1s larger than one tenth. The
conditions assumed in Eyring's derivation are the same three
already stated, except that now the sound energy 1s imagilned
to exlst 1n discrete wave trains. The energy 1n a wave
train remains constant as the train travels a mean path 4V/S
between reflections, and decreases discontlnuously at each
reflection. Since a fraction (1 - &) of the energy 1s re-
flected in each encounter and the average time between
reflections is 4V/cS, the intensity at a time t is propor-
tional to (1 - @) Sct/4V. This relation can be written in
the form of an exponential function as in Eq. (12.1.1), or
the result can be written as a reverberation time formula
as shown in Eq. (12.1.8) with units of feet and seconds.

T = 0.049 V/[-S 1n(1 -&)] (12.1.8)

The average absorptlon coefflclent 1s defined, as before, by
(12.1.5). Equation (12.1.8), although sometimes seriously
in error when the absorption coefficient varies greatly be-
tween different wall areas, 1s the basls for most practical
calculations for sound decay in rooms. Equations (12.1.7)

and (12.1.8) give essentially identical results when & 1s
less than O.1.

Reverberation Chamber Measurement of Absorption Coeffi-
cient. Equation (12.1.7) or (12.1.8)¥ 1S commonly used to
derive values of the absorption coefficient from the experi-
mentally measured reverberation time in a specially designed

The two equations give the same result for the values of &
ordinarily used in these measurements.
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room known as a reverberation chamber. Typically, a rever-
beration chamber 1s an enclosure of 10,000 to 20,000 cu ft
volume and with walls of very small absorption so that the
reverberation time is long (preferably greater than 10 sec
when no absorbent sample is present). Measurements of the
reverberation time with and without a sample of absorbing
material in the chamber glve sufficlent data to determine

both the effective absorption due to the walls and the en-
closed air, and that absorption due specifically to the

sample. Silnce the finite patch of absorbing material which

1s used as a sample has more absorption per unlt area than
would a complete wall covering (because of diffraction effects),
suitable emplrical corrections are used to derive effective
values of the absorption coefficient for a large area. Fur-
ther references to the measurement method are given in Ref.l.2.

The absorption coefficlent derived from these measure-
ments 1s, by definition, the chamber absorption coefficient.
Detalls of the testing procedure must be stated in order to
specify a chamber coefficient completely. Various artifices
are used in reverberation chambers to produce random dlrec-
tions of sound travel (i.e., a diffuse sound field), with the
aim of produclng conditions which will allow the chamber co-
efficient to be identified with the statistilcal absorption
coefficlent. It 1s impossible, however, to obtain a diffuse
sound field in the requlred sense unless the smallest chamber
dimension is many times a wavelength. For thils reason it
appears that the chamber coefficients which are commonly
reported are a close approximation to the statistical coeffi-
cient only for frequencies of 2,000 cps and higher. The
chamber coefficlent at lower frequencies becomes more nearly
equal to the normal wall coefficlent, (5, which governs the
decay of most of the acoustic modes of vibration 1n a room
where the largest dimenslion 1s only a few times the wave-
length.

It appears that the departure from diffuse conditions
in the reverberation chamber at the lower frequencies is
responsible for a disagreement between calculated and measured
values of the low-frequency reverberation time for large
auditoria or other enclosures of several hundred thousand cu
ft volume, when the chamber coefficlent is used for calcula-
tions by means of Eq. (12.1.8). The sound field in a large
auditorium or other large room of 1rregular shape approaches
the diffuse condition at all audio frequencles. The observed
reverberation time is longer than that calculated on the basis
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of the chamber coefficient. This 1s because the chamber
coefficient approaches &, at low frequenciles, and & 1s
generally larger than the quantity gtgt which should be
used in Eq. (12.1.8) for diffuse sound fields.

Table 12.1.1 shows a comparison of the statistilcal
coefficient and the chamber coefflclent for one particular
absorbing material. The effects just mentlioned are apparent. )
The statistical coeffilcient was calculated from acoustic
Impedance data. The chamber coefficlent is the result of
measurements of the same sort as those reported by the
Acoustical Materials Association 1.6/. This organization
publishes sound absorption data for commercial materlals, as
measured by a carefully standardized reverberation chamber
technique. The large discrepancy at 512 cps 1s found in
other data comparlisons and 1s probably a systematic effect
in the chamber measurements.

TABLE 12.1.1

COMPARISON OF STATISTICAL ABSORPTION

COEFFICIENTS AND AMA CHAMBER COEFFICIENTS
(material: 10.5 1b/ft3 PF Fiberglas, L4"
thick, hard backing)

Frequency Statistical  AMA Chamber i
Coefficient = Coefficlent

cpe Pstat ]
128 0.53 0.66
256 0.69 0.69
512 0.78 0.99
1024 0.82 0.88
2048 0.90 0.90
L4096 0.93 0.93
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Comparison of Statistical Coefficient and Wall Coeffi-
clents. The statlstical absorption coefficient applles to
problems of sound absorption only where a diffuse sound field
exists. In this special case Eqs. (12.1.7) or (12.1.8) may
be used to compute the reverberation time. These equations
infer that the absorption coefflelent of the acoustical
material at a given frequency 1s independent of the shape
of the room, of the position of the material, and of the
sound source 1n the room.

The detalled theory of wave acoustics, which hag been
worked out for enclosures of simple shape, shows that in
general the acoustical damping produced by absorbing material
in & room depends upon the material, the shape of the room,
the positlon of the material in the room, and which modes of
acoustlcal vibration in the enclosure are excited by the
sound source. The Sabine assumptidns represent only a spe-
clal 1limiting case, which can be approached when the enclo-
sure (or the arrangement of absorbing patches within the
enclosure) 1s irregular, and when the wavelength is very
small compared to the shortest dimension of the enclosure.
Also, the general wave theory indicates that, because the
damping constants differ for the various groups of vibrational
modes, the decay of the total acoustical energy in the enclo-
sure 1s not a single exponentlal function, and the reverbera-
tion phenomenon cannot be described adequately by a single
reverberation time except under the speclal Sabine conditions.

The distinction between the two approaches may be
il1lustrated for the case of a rectangular enclosure. Let the
dimensions of the enclosure along the x, y, and z axes be
Lx, Ly, and Lz. According to wave theory, the frequencies
of free acoustical vibration of the enclosure are given
approximately by

£(nnn) = (/2) { (n/8)2 (0 /8)2 (n/1)2
b 4 X' Tx y z' Tz

Yy z

(12.1.9)

where each n may be equal to any integer (including zero).
The value of nx 1s equal to the number of pressure maxima
between the walls x = O and x = Lx in the wave pattern of the
vibration; for ny = O, the pressure 18 nearly uniform in the
X direction. The other n's have corresponding interpretations.
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Oblique waves correspond to the case of none of the n's
equal to zero. Tangentlal waves correspond to one n equal
to zero; for example, for ny = 0, the wave motlon 1s tan-
gential (grazing) with respect to the x walls (the walls at
x =0, x = Ly). Axial waves correspond to two n's equal to
zero; for example, for ny = 0, ny = 0, the wave motion is
grazing with respect to both x and y walls.

The damping of any one vibration in the rectangular
enclosure, according to wave theory, 1s computed by using
in Eq. (12.1.6), in place of the Sabine absorption &S, the
room absorption factor, ay, defined by Eg. (12.1.10). It
1is assumed that each wall has uniform acoustical properties.

ay = LyLz(micl+ QiE) + LxLz(O§1 + Q§2) + LxLy(oél + 0%2)

(12.1.10)

The C's are the wall coefficlents. Subscripts xl, x2 refer
to the walls at x = 0 and x = Lx respectively, and so forth.
While considerable calculation may be required to find the
Q1g from acoustlic impedance data for the walls, simple
approximations hold when the walls are "hard".* For a room
with hard walls, each & for a wall where the wave motion 1is
obliquely incident 1s approximately equal to the normal wall
coefficlent Gp, and each & for a wall subjJect to grazing
incidence i1s equal to the grazing wall coefflclent, which
in this case 1s approximately <1p/2.

" For a numerical example, conslder an enclosure having di-
mensions Lx,Ly,Lz equal respectively to 10,15, and 20 ft, with
a freely decaying acoustical vibration 1n the mode ny = O,
ny =1, n, = 1. According to Eq.(12.1.9), the frequency of
t%is vibration 1s approximately 46 cps (using ¢ = 1100 ft/sec).

A "hard" wall is one for which the specific impedance
ratio is greater than twice the length of the rpom in
wavelengths, measgured perpendicular to that wall; all
ordinary acoustical tlles on massive backings may be

considered hard below 200 ¢ps in rooms nqQt larger than
20' in any direction.
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Let the normal absorption coefficient for each wall be 0.05
at this frequency. The 9's in Eq. (12.1.10) are then each
equal to 0.05 except that grazing incidence occurs on both
of the 10 x 15 ft walls, and the & value for each of these
is therefore 0.025. The room absorption factor ay from
Eq. (12.1.10) is 50 ft2. This value can be used in place of
& S in Eq. (12.1.6) to obtain_the damping constant. The
value of the Sabine quantity of ®S is 65 ft2; hence appre-
clably greater damping would be reallzed under the Sabine
conditlons than for the case conslidered here, in which the
(0,1,1) mode is excited. The discrepancy is more severe if
only the 15 x 20 ft ceiling is absorptive; then ay 1s 7.5 £t2
and & S (the Sabine factor% is 15 ft©., 1In the hard wall
approximation, there is no disagreement between the wave
theory and the diffuse-room reverberation formula for oblique
modes. Thus; In practice the obllique modes decay most rapidly,
at roughly the rate given by the Sablne relation, and leave
the axial and tangentlal vibrations dylng out at slower rates.
This effect 1s especlally pronounced when all the absorbing
materlal 18 on one surface.

When the hard-wall approximation 1s not introduced,
the complete wave theory indicates further effects of the
position of the material and the nature of the exclited modes
upon the damping. For example, the effects of opposite walls
are not necessarily additive. The presence of a soft wall
may result in a concentration of the acoustical energy 1n the
end of the room near that wall. This 1n turn increases the
effectiveness of the soft wall as a sound absorber, so that
the normal wall coefficient for a soft wall may be greater
than unity.

The Specific Acoustic Impedance and Related Quantities.
A measure of the acoustical properties of a surface which has
more general applicatlon than any of the "coefficlents"” 1is
the normal specific acoustic impedance. This quantity 1is
defined by the relation

z=r + Jx =p/v, (12.1.11)

where p is the acoustic pressure at the surface, and v 1s

the resulting velocity component normal to the surface of air
particles Just in front of the surface. Ordinarily p 18 in
dynes/ecm2 and v in cm/sec. The resulting unit for z is called
a rayl. The acoustic pressure 1s the sum of the instantaneous
pressure produced by an incident acoustic wave and of the
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instantaneous pressure of any reflected wave which
may be set up.

The normal speciflc acoustic impedance is independent
of the angle of 1ncidence of the sound 1f there 1s no effec-
tive wave propagation behind the surface in a direction
parallel to the surface. This requirement means that such
wave motlion must be hilghly attenuated or have a veloclity
much smaller than the velocity of sound in air; this 1s the
condition of "local reaction" discussed in Sec. 12.2. It
has also been shown experimentally that z 1s practically
independent of the incident angle for materials representa-
tive of commercial acoustic tlles 1.7/.

The impedance 1s usually a complex number. The complex
representation, which has meaning only for sinusoidal signals,
has the same signiflcance as that used 1n alternating current
theory. Thus, the real part of z 1is the ratio to v of the
component of p which 1s in phase with v, while the imaglnary
part of z is the ratio to v of the portion of p which is 90°
out of phase with v. The real and imaginary parts of z, r
and x, are respectively the normal specific acoustic resis-

tance and the normal speciflic acoustic reactance. The adjec-
tive "normal" will be omitted except where there i1s a possi-

bility of confusion with some impedance not concerned with
the normal component of particle veloclty.

The specific acoustlic impedance for a perfect absorber
of plane waves (or for an infinite body of alr, which is
effectively a perfect absorber) 1s Pc, where p 1s the density
of air (Fig. 3.1) and c¢c 1is the speed of sound. It is often
convenlent to express z in units of @c. The dimensionless

quantity obtained in this way 1s called the speciflc acoustic
Impedance ratio denoted by

LU

- 2
£ =55=0+ X
The reciprocal of the specific acoustic impedance 1is
the specific acoustic admittance, y. The reclprocal of the
specific acoustic impedance ratio 1s the speciflc acoustic
admittance ratio, m = 1l/g = « + Jk. The quantity« is the

specific acoustic conductance ratio, and k 1s the specific
acoustlic susceptance ratio.
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Several methods for the measurement of the specific
acoustic impedance are described in the literature 1.2/.
A1l the methods have to do, 1n a general way, with measuring
various aspects of the system of incident and reflected waves
which is set up when an acoustlic wave 1is incident on the test
surface, either 1n open space or in an enclosure. Ordinarily
acoustic impedance measurements are made on samples not
larger than one sq ft; usually the samples are much smaller,
particularly 1f measurements 1in a standing-wave tube are to
be made to several thousand cps.

Because of the limitations on sample size, an averaging
problem arises In connection wlth materilals having large-
scale variations in structure. Also, with small samples it
is difficult to reproduce any kind of backing other than
that of an effectively rigid wall. 1In the technlques most
commonly used, the sample 1s cut to fit snugly within the
end of a containing tube. It has been shown that materilals
having a very light skeleton (not heavier than about 2 1b/ft3)
must be treated with great caution in tube mountings, because
the clamping effect of the walls hinders the ordinarily
apprecliable motion of the skeleton 1n response to the sound
wave and seriously changes the impedance. When the above
difficulties are not important, lmpedance measurements can
be made with laboratory apparatus to within 3 per cent on
acoustic tiles and blankets. The angle of incidence is 0°
in most 1mpedance measurements.

Relation Between Impedance and Absorption Coefficlents.
For surfaces which can be characterlzed by a normal 1mpedance
independent of angle of incidence (this includes ordinary
acoustical tiles and blankets with hard backing), the relation
between impedance and free-wave absorption coefficlent 1s
simple. This relation can be derived by setting up expressions
for incldent and reflected waves, and imposing the condition
that the phase and amplitude relations between the waves shall
be such that the relation between total pressure at the surface
and the normal particle velocity 1s Just that corresponding
to the specific acoustic impedance. It 1s then possible to
compute the difference of intensity of the incident and re-
flected waves, and to obtain the absorption coefficient, which
is the fractional loss of intensity. In this way, it 1s found
that the free-wave absorptlion coefficient, where the angle of
incidence as measured from the normal 1s o,
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x(e) = — s cos © s (12.1.12)
k“ + (L + cos 9)

where i and k are the real and lmaglnary parts of the
specific acoustic admittance ratio. PFor a wall having an
acoustic impedance several times pc, so that |u + Jk| <<1,
it follows from thls relation that the normal free-wave
absorption coefficient (0 = 0°) 1s simply equal to Uu.

The method for computing the statistical (Sabine)
absorption coefficient from a(©) has been shown in
Eq. (12.1.3). When the indicated averagling process 1s
applied to (12.1.12), 1t 1s found that the statistical
coefficient 1s glven by:

2.2
20 + 1 -k -1 k
Ccstat = 8un (l-uln[l + _.,E;ﬂ_z_.] + [P__l..(__] tan [m]}

This relation 1s derived for the case in which n 1is
Independent of angle of incidence. Flgure 12.1.1 1s
derived from this equation but it reads 1n terms of im-
pedance rather than admittance. When values of the real
and imaginary parts of the specific impedance ratlo are
avallable, this chart glves the statlistical coefficlent
directly. Note that a surface must have a resistive
impedance of almost 1.6 pc to glve a statistical absorption
coefficlient of 0.951, which is the largest possible value,
whereas the lmpedance must be pc to give the normal free- .
wave coefficlent, (O°), 1ts largest possible value (unity).

This difference represents an averaged effect of the varia-

tion of (@) with angle of incidence.

FIGURE 12.1.1

The statistical absorption coefficient, X i ¢ in terms
of the real and imaginary parts of the normal specific
acoustic impedance ratio . It is assumed that the normal
impedance 1s independent of angle of incidence.
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Behavior of Acoustical Materlals in Terms of Thelr
Physical Structure. While the normal specific impedance
is a quantity of wlder appllcability than any of the coeffl-
clents, the physical structure parameters of the material
sometimes have even wlder applicabllity than the specific
impedance. For materlials whose acoustlic behavior 1s readlly
subject to analysis, a knowledge of several structural
parameters permits the calculation of the impedance for any
thickness of materital, subjJect to a variety of backing condi-
tions, and for any angle of incidence, even when the
impedance varles with angle. Since the structure parameters
can be measured simply, we can determine the acoustical
behavior of a material with a minimum of experimental effort.
Moreover, working from the basic physical propertles of
material sometimes makes 1t possible to derive much more
useful design equations or charts, showlng the complete
frequency behavior of a sound-reducing structure in terms
of a few simple quantities. An example of this 1s found in

Sec. 12,2, in the discussion of a duct lined with a porous
material.

Considerable published material 1is avallable for the
calculation of acoustical properties from structural con-
stants 1.1, 1.2, 1.3, 1.8, 1;3/ The present discussion will
be restricted to the simple case of an 1sotropic porous
material with a rigld skeleton and mounted on a rigid backing.
It will appear that the 1mportant parameters are the porosity
(the fraction of the total volume which is occupied by air),
the structure factor (related to the increased effective
inertia of air which i1s accelerated in small passages), and
the flow resistance.

The porosity can be obtained from an experiment which
involves finding the apparent compressibllity of the air
in the sample. Because the solild 1s virtually imcompressible,
the specimen acts like a volume of alr in which the modulus
of compression 1s 1/h times the true compressional modulus
of alr, where h 1s the porosity. For practical materials,
h 1s at least 0.7 and 1s usually not less than 0.9. The
flow resistance of a sample 18 obtained by direct measure-
ment of the pressure drop across the sample when alr 1s
forced at a known, steady rate through a slab of known area
and thickness. The result 1s usually reduced to the specific
flow resistance (rr) (rayls per cm thickness). This is
numerically equal to the pressure drop assoclated with an
air flow of one cm3/sec through a sample of area one sq cm
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and thickness one cm (sometimes specific flow resistance

is reported in rayls per inch of thickness). The structure
factor, the exact definition of which can be obtained from
Eq. (12.1.15), must be found from an experimental measure-
ment of impedance or of propagation constant in the material.
This does not discourage the use of thls approach because

(1) the structure factor ordinarily does not vary rapidly
with frequency, so that extensive measurements are unneces-
sary; (2) it is not necessary to know the structure factor
in order to compute the impedance of a rigidly backed layer
which is thin compared to a wavelength. ‘

The theory of the absorbing layer gives the surface
impedance in terms of the propagation constant, the char-
acteristic impedance for waves traveling in the layer, and
the thickness. The case of perpendicular incidence will be
consldered here, since it 18 an experimental fact that the

" result 1s substantially independent of angle for most porous

layers. Suppose that a sinusoidal pressure variation at the
surface of the porous layer sets up plane waves 1n the layer,
traveling normally to the surface. The pressure 1n the wave
entering the material lm proportional to exp (-Jk x), where
distance 1s measured from the surface into the lafer, and

ky 18 the propagation constant which 18 to be found. The
layer thickness 1s t. At the backing (x = t) a reflected
wave 1s set up. The ratio of the pressure in the reflected
wave to that in the incident wave, at x = t, 18 .defined as
exp (2'%?. Then the reflected wave must have pressure pro-
portional to exp (2 ¥ + jkyx - j2kjt). It is desired to
find the specific surface edance, which is the ratio of..
pressure to particle velocity at x = 0. The total pressure
at x = 0 is proportional to 1 + exp (2 ¥ - j2kit). The
particle velocity at the surface due to either wave 1s equal
to the pressure divided by Zy, which 1s the characteristic
impedance of the layer mater}al (analogous to the quantity
pc for open air). Since the waves are oppositely dilrected,
the particle velocities must be subtracted, and the total
surface particle velocity 1s proportiocnal to [1 - exp

(2 ¥ - J2k}t)]/21. Dividing the pressure by the particle

velocity gives for the surface apeciflc impedance
z = Z; coth (,jklt -¥) (12.1.14)
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The value of ¥ depends upon the reflectivity of the backing.
For a rigid backling, complete reflection occurs with no
pressure phase shift, so that ¥ 1s zero and the specilfic
surface impedance 1is

z = Z. coth (Jklt) . (12.1.14a)

1
(Rigldly backed layer)

If the layer 1s thln enough that klt <<1,
~ J 2
z> - J(Zl/klt) [1+ 3 (klt) ] . (12.1.14b)

(Rigldly backed layer thin compared
to wavelength)

The negative of the imaginary part of kj 1s the attenuation
constant 1/8.69) times the attenuation in db per unit dis-
tance) for wave motion in the layer. For -Im(k;) > 1/t, a
condition which will be realized at high frequencies, the
total attenuation 1s sufficlently large that the effect of
the reflected wave may be neglected. Roughly speaking, this
condition occurs when the thickness of a practical porous
material 1s greater than A/4. For this case, the surface
impedance 1s

z <27 (12.1.14¢)

(Thick layer, any backing)

The propagatlon constant and the characteristic imped-
ance will now be related to the structure parameters of the
porous layer. It 1s assumed that motion of the skeleton can
be neglected, which in practice seems to require porous
materials having a density of 6 1b/ft3 or more. A sinusoidal
wave 1n the layer with pressure proportional to exp (Jwt—Jklx)
1s assumed. The volume veloclty* per unit area, which at the
surface 18 equal to the ordinary particle veloclty in the
outside air, is vq. The negative of the pressure gradient
is Jkjp. A portion of the pressure drop in a thin volume
element, as described by this quantity, 1s assoclated with

The volume velocity is the rate of volume flow
(e.g., cm3/sec).
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the acceleration jevy of the volume fiow in the element,
and another portion with overcoming the frictlonal resistance
to air flow, as indicated in Eq. (12.1.15).

Jop = mpwv, + 1oV, . (12.1.15)

Note that this equation effectively defines the structure
factor, m, The rate of change of volume 1s related to the
rate of pressure change by the effective modulus of compres-
sion of the gas. The adiabatic modulus of free alr is pc2,
but on account of the solid content present, the effective
modulus 1s @ c2/h in the adlabatic case, or ¢ c2/h 1in the
event that the compression is isothermal. Here ¥ i1s the ratio
of the specific heat at constant pressure to the specific

heat at constant volume, which for air 1s equal to.1.40.

Thus:

Jk1P ¢2 vl/h () = Jwp . (12.1.16)
(¥ to be omitted for the adiabatic case)

Combining Eqs. (12.1.15) and (12.1.16) gives for the propa-
gation constant,

k, = k:/%(m - rf/pcn ) (a”) (12.1.17)
(« to be omitted for the adiabatic case)

where k denotes the propagation constant for open air, equal
toew/c. To obtain the characteristic impedance, which 18
the ratio of pressure to volume velocity in a plane wave,
Eq. (12.1.16) may be used. This glves Z; = k, c2/(7)h w ,
or:

z, = po Jim - grp/pes)/n (¥)  (12.1.18)

(4 o be omitted for the adiabatic case) .

The specific acoustic impedance of the rigidly backed layer
can now be calculated by going back to Egs. (12.1.14), and
the statistical absorption coefficient can be calculated
from the impedance. Where the layer is thin compared to the
wavelength, so that Eq. (12.1.14b) applies, a particularly
simple result is obtalned. The surface specif